中国高校课件下载中心 》 教学资源 》 大学文库

东北大学:某学院应用统计学专业《数学分析与建模》课程教学大纲(二)

文档信息
资源类别:文库
文档格式:PDF
文档页数:12
文件大小:481.33KB
团购合买:点击进入团购
内容简介
东北大学:某学院应用统计学专业《数学分析与建模》课程教学大纲(二)
刷新页面文档预览

数学分析与建模(二)教学大纲MathematicalAnalysis and)SubjectSyllabusModeling(II),课程信息SubjectInformation课程编号:开课学期:23100311002Subject IDSemester课程分类:所属课群:专业教育PA专业基础MFCategorySection课程学分:总学时/周:696/16Credit PointsTotal Hours/Weeks理论学时:实验学时:960LECT. HoursEXP. HoursPBL学时:实践学时/周:00PBL HoursPRAC.Hours/Weeks东北大学悉尼智能科技学院适用专业:开课学院Sydney Smart应用统计学ASCollegeTechnologyCollegeStreamNortheastemUniversity课程属性:课程模式:必修Compulsory互认EQVPatternMode中方课程协调人王晓敏成绩记载方式:百分制MarksNEU CoordinatorWangXiaominResult Type先修课程:数学分析与建模(一)MathematicalAnalysisandModeling(I)RequisitesMoHuixia,LiXiaohua,Yuan Jianhua,Yuan Jianhua,Ai Wenbao,Zhu英文参考教材Ping,AdvancedMathematics(Il),2ndEdition,BeijingUniversity ofENTextbooksPostsandTelecommunicationsPress,2018邓东皋,尹小玲,数学分析简明教程(第二版)下册,高等教育出版中文参考教材:社,2006.CN Textbooks同济大学数学系,高等数学(第七版)下册,高等教育出版社.2015教学资源:https://sstc.cloudcampus.com.cn/course/view.php?id=gResources王晓敏提交日期:课程负责人(撰写人):3/3/2023Subject DirectorWangXiaominSubmitted Date任课教师(含负责人):王晓敏、刘艳杰Taught byWang Xiaomin, Liu Yanjie审核人:批准人:韩鹏史闻博Checked byApproved by批准日期:3/6/2023Approved Date1/ 12

1 / 12 数学分析与建模(二) 教学大纲 Subject Syllabus Mathematical Analysis and Modeling(II) 一、课程信息 Subject Information 课程编号: Subject ID 3100311002 开课学期: Semester 2 课程分类: Category 专业教育 PA 所属课群: Section 专业基础 MF 课程学分: Credit Points 6 总学时/周: Total Hours/Weeks 96/16 理论学时: LECT. Hours 96 实验学时: EXP. Hours 0 PBL 学时: PBL Hours 0 实践学时/周: PRAC. Hours/Weeks 0 开课学院: College 东北大学 悉尼智能科技学院 Sydney Smart Technology College Northeastern University 适用专业: Stream 应用统计学 AS 课程属性: Pattern 必修 Compulsory 课程模式: Mode 互认 EQV 中方课程协调人: NEU Coordinator 王晓敏 Wang Xiaomin 成绩记载方式: Result Type 百分制 Marks 先修课程: Requisites 数学分析与建模(一)Mathematical Analysis and Modeling (I) 英文参考教材: EN Textbooks Mo Huixia, Li Xiaohua, Yuan Jianhua, Yuan Jianhua, Ai Wenbao, Zhu Ping, Advanced Mathematics (II), 2nd Edition, Beijing University of Posts and Telecommunications Press, 2018. 中文参考教材: CN Textbooks 邓东皋,尹小玲,数学分析简明教程(第二版) 下册,高等教育出版 社, 2006. 同济大学数学系, 高等数学(第七版)下册, 高等教育出版社, 2015. 教学资源: Resources https://sstc.cloudcampus.com.cn/course/view.php?id=9 课程负责人(撰写人): Subject Director 王晓敏 Wang Xiaomin 提交日期: Submitted Date 3/3/2023 任课教师(含负责人): Taught by 王晓敏、刘艳杰 Wang Xiaomin, Liu Yanjie 审核人: Checked by 韩鹏 批准人: Approved by 史闻博 批准日期: Approved Date 3/6/2023

二、教学目标SubjectLearningObjectives(SLOs)注:毕业要求及指标点可参照悉尼学院本科生培养方案,可根据实际情况增减行数Note:GAand indexcan bereferredfrom undergraduate program in SSTCwebsite.Please add/reduce lines basedon subject数学分析与建模是理工科专业课程的基础,通过学习极限、微分、积分等重要概念,为学生学习其它学科以至于专业课程打下扎实基础。培养学生较强的动手能力,以及思维的逻辑性、严谨性、创新性,以及利用数学原理和方法解决实际问题的意识、兴趣和能力。培养学生掌握高等数学的基本理论和方法,尤其是思维方式,掌握知识技能的同时发展创造能力。整体目标:Mathematical analysis and modeling is the foundation of science andOverallengineering courses. By learning the important concepts of limit, differentialObjectiveand integral, it can lay a solid foundation for students to learn other subjectsand even professional courses. To cultivate students' strong practical ability.logical,rigorous and innovative thinking,as well as the consciousness,interestand ability of solving practical problems by using mathematical principles andmethods.Cultivate students tomaster thebasic theories and methods of highermathematics,especiallythewayofthinking,masterknowledgeand skills,anddevelop creativeability at the same time具有扎实的专业基础与学科特长,系统掌握统计与数据分析、智能仿真建模技术、量化管理优化技术、试验设计与分析、项目管理与决策及其相关领域的专门知识与技能。A solidprofessional foundation and competency,systematical1-1mastery of the specialized knowledge and skills in statistics and dataanalysis, intelligent simulation modeling technology, quantitativemanagement optimization technology,experimental design andanalysis, project management and decision-making具有扎实的专业基础与学科特长,系统掌握信息通信系统、项目管理与决策及其相关领域专门知识与技能。Excellent engineering literacy, outstanding practical skills ininformation technology, and capable of creatively solving complex1-2(1)专业目标:engineering problems in information and communication and relatedProfessionalfields through scientific and technological theories and engineeringAbilitypractical methods, as well as the ability of doing academiccutting-edge project research.具有扎实的专业基础与学科特长,系统掌握大数据与人工智能系统、项目管理与决策及其相关领域专门知识与技能。Excellent engineering literacy, outstanding practical skills ininformation technology, and capable of creatively solving complex1-3 engineering problems in computer science and related fields throughscientific and technological theories and engineering practicalmethods, as well as the ability of doing academic cutting-edgeproject research.具有卓越的技术素养和突出的应用统计学实践能力,具备在应用1-4统计学及其相关领域通过科学技术理论和方法创造性的解决复杂问题、从事学术前沿问题研究的能力。2 /12

2 / 12 二、教学目标 Subject Learning Objectives (SLOs) 注:毕业要求及指标点可参照悉尼学院本科生培养方案,可根据实际情况增减行数 Note: GA and index can be referred from undergraduate program in SSTC website. Please add/reduce lines based on subject. 整体目标: Overall Objective 数学分析与建模是理工科专业课程的基础,通过学习极限、微分、积分等 重要概念,为学生学习其它学科以至于专业课程打下扎实基础。培养学生 较强的动手能力,以及思维的逻辑性、严谨性、创新性,以及利用数学原 理和方法解决实际问题的意识、兴趣和能力。 培养学生掌握高等数学的基本理论和方法,尤其是思维方式,掌握知识技 能的同时发展创造能力。 Mathematical analysis and modeling is the foundation of science and engineering courses. By learning the important concepts of limit, differential and integral, it can lay a solid foundation for students to learn other subjects and even professional courses. To cultivate students' strong practical ability, logical, rigorous and innovative thinking, as well as the consciousness, interest and ability of solving practical problems by using mathematical principles and methods. Cultivate students to master the basic theories and methods of higher mathematics, especially the way of thinking, master knowledge and skills, and develop creative ability at the same time. (1)专业目标: Professional Ability 1-1 具有扎实的专业基础与学科特长,系统掌握统计与数据分析、智 能仿真建模技术、量化管理优化技术、试验设计与分析、项目管 理与决策及其相关领域的专门知识与技能。 A solid professional foundation and competency, systematical mastery of the specialized knowledge and skills in statistics and data analysis, intelligent simulation modeling technology, quantitative management optimization technology, experimental design and analysis, project management and decision-making. 1-2 具有扎实的专业基础与学科特长,系统掌握信息通信系统、项目 管理与决策及其相关领域专门知识与技能。 Excellent engineering literacy, outstanding practical skills in information technology, and capable of creatively solving complex engineering problems in information and communication and related fields through scientific and technological theories and engineering practical methods, as well as the ability of doing academic cutting-edge project research. 1-3 具有扎实的专业基础与学科特长,系统掌握大数据与人工智能系 统、项目管理与决策及其相关领域专门知识与技能。 Excellent engineering literacy, outstanding practical skills in information technology, and capable of creatively solving complex engineering problems in computer science and related fields through scientific and technological theories and engineering practical methods, as well as the ability of doing academic cutting-edge project research. 1-4 具有卓越的技术素养和突出的应用统计学实践能力,具备在应用 统计学及其相关领域通过科学技术理论和方法创造性的解决复 杂问题、从事学术前沿问题研究的能力

Excellent technical literacy, outstanding practical skills in appliedstatistics, and capable of creatively solving complex engineeringproblems in applied statistics and related fields through scientific andtechnological theories and engineering practical methods, as well asthe ability of doing academic cutting-edge project research理解高等数学理论知识对于刻画工程实践问题的重要意义。2-1Understand the significant meanings of the advanced mathematics indepictingthepracticalengineeringproblems(2)德育目标:认知当前全球,数学理论的发展对提升中国工程关键技术及核心Essential竞争力的重要意义。Quality2-2Understand the technology development, key techniques and the corecompetitiveness in the area of the China engineering in the world课程教学目标与毕业要求的对应关系MatrixofGA&SLOs毕业要求GA指标点GAIndex教学目标SLOs1、理学知识:具有扎指标点1-1:具有较强的演绎推理能力、准确实的数学基础,能够将计算能力、分析归纳能力、抽象思维能力,掌数学、自然科学和专业握数学、自然科学和相关专业知识,并使用其知识用于解决复杂实建立正确的数学、物理学等模型以解释复杂实际问题。际问题。Applyknowledgeof1-1, 1-2Capableofdeductivereasoning,accuratemathematics,naturalcalculation,analysis and induction and abstractscience, fundamentalsthinking.Establishing correctmathematical andand an engineeringphysicalmodelswiththeprofessionalspecialization to theknowledgeof mathematics, natural science, etcsolution of complextosolvecomplexpracticalproblemsengineering problems2-1能够应用数学、自然科学和工程学的基本2、问题分析:能够借原理、方法和手段,分析、识别、表达本专业助应用统计学的基本相关的复杂工程问题。原理、方法和手段,识identifying1-2, 1-3, 2-1Capableofanalyzing,and别、表达、并通过文献elaborating complex practical problems related研究分析复杂实际问to this major with the applying of the basic题,以获得有效结论。principlesofApplied StatisticsIdentify,formulate,2-2能够应用数学、自然科学和工程学的基本research literature and原理、方法和手段,针对实际复杂工程问题设analyzecomplex计针对性的技术方案,并综合运用文献、科学problemspractical基座和技术手段予以解决。reachingsubstantiated1-3, 1-4, 2-1, 2-2Capable of drawing on the basic principles ofconclusions using firstapplied statistics to design targeted schemes forprinciplesofcomplex practical problems, and using literature,mathematicsandscientific theories and technical means to solvesciencesthem.3/12

3 / 12 Excellent technical literacy, outstanding practical skills in applied statistics, and capable of creatively solving complex engineering problems in applied statistics and related fields through scientific and technological theories and engineering practical methods, as well as the ability of doing academic cutting-edge project research. (2)德育目标: Essential Quality 2-1 理解高等数学理论知识对于刻画工程实践问题的重要意义。 Understand the significant meanings of the advanced mathematics in depicting the practical engineering problems. 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核心 竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 课程教学目标与毕业要求的对应关系 Matrix of GA & SLOs 毕业要求 GA 指标点 GA Index 教学目标 SLOs 1、理学知识:具有扎 实的数学基础,能够将 数学、自然科学和专业 知识用于解决复杂实 际问题。 Apply knowledge of mathematics, natural science, fundamentals and an engineering specialization to the solution of complex engineering problems. 指标点 1-1:具有较强的演绎推理能力、准确 计算能力、分析归纳能力、抽象思维能力,掌 握数学、自然科学和相关专业知识,并使用其 建立正确的数学、物理学等模型以解释复杂实 际问题。 Capable of deductive reasoning, accurate calculation, analysis and induction and abstract thinking. Establishing correct mathematical and physical models with the professional knowledge of mathematics, natural science, etc. to solve complex practical problems. 1-1, 1-2 2、问题分析: 能够借 助应用统计学的基本 原理、方法和手段,识 别、表达、并通过文献 研究分析复杂实际问 题,以获得有效结论。 Identify, formulate, research literature and analyze complex practical problems reaching substantiated conclusions using first principles of mathematics and sciences. 2-1 能够应用数学、自然科学和工程学的基本 原理、方法和手段,分析、识别、表达本专业 相关的复杂工程问题。 Capable of analyzing, identifying and elaborating complex practical problems related to this major with the applying of the basic principles of Applied Statistics. 1-2, 1-3, 2-1 2-2 能够应用数学、自然科学和工程学的基本 原理、方法和手段,针对实际复杂工程问题设 计针对性的技术方案,并综合运用文献、科学 基座和技术手段予以解决。 Capable of drawing on the basic principles of applied statistics to design targeted schemes for complex practical problems, and using literature, scientific theories and technical means to solve them. 1-3, 1-4, 2-1, 2-2

三、教学内容Content(Topics)注:以中英文填写,各部分内容的表格可根据实际知识单元数量进行复制、扩展或缩减Note: Filled in both CN and EN, extend or reduce based on the actual numbers of knowledge unit理论教学Lecture知识单元序号:支撑教学目标:11-1,1-2,1-3,1-4Knowledge Unit No.SLOs Supported实数连续性知识单元名称Unit TitleContinuity of Real Numbers实数连续性的等价描述Equivalentdescriptionofcontinuityof real numbers实数闭区间的致密性Compactness of closed intervals of real numbers知识点:实数的完备性Knowledge DeliveryCompletenessof realnumbers闭区间上连续函数的性质Properties ofcontinuousfunctionson closed intervals实数集的上确界、下确界、覆盖的概念了解:Concepts of supremum,infimumand cover of realRecognizenumbersets确界原理、单调有界原理、有限覆盖定理、区间套定理、致密性定理、柯西收敛原理的相互等价性理解:The mutual equivalence of supremum and infimumUnderstandprinciple, monotone bounded principle, finite covering学习目标theorem, nested interval theorem,compactness theoremLearning Objectivesand Cauchy convergence principle上述定理相互等价的证明思路和方法Ideasand methodsforprovingthe equivalenceof the掌握:abovetheoremsMaster闭区间上连续函数的性质的证明思路和方法Ideasandmethodsforprovingthepropertiesofcontinuous functions on closed intervals2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, key techniques and the corecompetitiveness in the area of the China engineering in the world确界定理、单调有界原理、有限覆盖定理重点:supremumand infimumtheorem,monotoneboundedprinciple,finiteKey Pointscovering theorem难点:上述定理相互等价的证明思路和方法Focal pointsIdeas and methodsforproving the equivalenceofthe abovetheorems4/12

4 / 12 三、教学内容 Content (Topics) 注:以中英文填写,各部分内容的表格可根据实际知识单元数量进行复制、扩展或缩减 Note: Filled in both CN and EN, extend or reduce based on the actual numbers of knowledge unit 理论教学 Lecture 知识单元序号: Knowledge Unit No. 1 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 实数连续性 Continuity of Real Numbers 知识点: Knowledge Delivery 实数连续性的等价描述 Equivalent description of continuity of real numbers 实数闭区间的致密性 Compactness of closed intervals of real numbers 实数的完备性 Completeness of real numbers 闭区间上连续函数的性质 Properties of continuous functions on closed intervals 学习目标: Learning Objectives 了解: Recognize 实数集的上确界、下确界、覆盖的概念 Concepts of supremum, infimum and cover of real number sets 理解: Understand 确界原理、单调有界原理、有限覆盖定理、区间套定 理、致密性定理、柯西收敛原理的相互等价性 The mutual equivalence of supremum and infimum principle, monotone bounded principle, finite covering theorem, nested interval theorem, compactness theorem and Cauchy convergence principle 掌握: Master 上述定理相互等价的证明思路和方法 Ideas and methods for proving the equivalence of the above theorems 闭区间上连续函数的性质的证明思路和方法 Ideas and methods for proving the properties of continuous functions on closed intervals 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 重点: Key Points 确界定理、单调有界原理、有限覆盖定理 supremum and infimum theorem, monotone bounded principle, finite covering theorem 难点: Focal points 上述定理相互等价的证明思路和方法 Ideas and methods for proving the equivalence of the above theorems

知识单元序号支撑教学目标:21-1,1-2,1-3,1-4Knowledge UnitNoSLOs Supported知识单元名称数项级数Unit TitleSeries with Constant Terms数项级数的收敛与发散Convergence and divergence ofa series with constant terms级数的性质Propertiesofseries数项级数收敛的必要条件知识点:Anecessary conditionforconvergenceofa serieswithconstanttermsKnowledge Delivery正项级数收敛性的判别法Convergencetests for series withpositiveterms柯西收敛原理Cauchyconvergenceprinciple般项级数的收敛性判别法General series and tests for convergence数项级数收敛、发散以及收敛级数的和的概念了解:Concept of convergence, divergence of series and theRecognizesum of convergent series级数的性质Propertiesofseries狄利克雷判别法和阿贝尔判别法理解:学习目标Dirichlet test and Abel test无穷级数与广义积分之间的共同点与差异Learning ObjectivesUnderstandSimilarities and differences between infinite series andgeneralized integral正项级数收敛性的判别法掌握:Convergence tests for series with positivetermsMaster莱布尼茨判别法Leibniztest2-1理解高等数学理论知识对于刻画工程实践问题的重要意义。德育目标Understand the significant meanings of the advanced mathematics inMoral Objectivesdepictingthepractical engineeringproblems正项级数收敛性的判别法重点:ConvergenceTestsfor Series withPositiveTermsKey Points莱布尼茨判别法Leibniztest难点:柯西收敛原理CauchyconvergenceprincipleFocal points知识单元序号支撑教学目标31-1,1-2,1-3,1-4Knowledge Unit No.SLOs Supported函数项级数知识单元名称Unit TitleFunctional Series函数项级数的收敛域与和函数Convergence domain and sum function of functional series知识点:函数项级数的一致收敛的概念Knowledge DeliveryConcept of uniform convergence of functional series致收敛函数项级数的性质Properties of uniformly convergent functional series5/12

5 / 12 知识单元序号: Knowledge Unit No. 2 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 数项级数 Series with Constant Terms 知识点: Knowledge Delivery 数项级数的收敛与发散 Convergence and divergence of a series with constant terms 级数的性质 Properties of series 数项级数收敛的必要条件 A necessary condition for convergence of a series with constant terms 正项级数收敛性的判别法 Convergence tests for series with positive terms 柯西收敛原理 Cauchy convergence principle 一般项级数的收敛性判别法 General series and tests for convergence 学习目标: Learning Objectives 了解: Recognize 数项级数收敛、发散以及收敛级数的和的概念 Concept of convergence, divergence of series and the sum of convergent series 理解: Understand 级数的性质 Properties of series 狄利克雷判别法和阿贝尔判别法 Dirichlet test and Abel test 无穷级数与广义积分之间的共同点与差异 Similarities and differences between infinite series and generalized integral 掌握: Master 正项级数收敛性的判别法 Convergence tests for series with positive terms 莱布尼茨判别法 Leibniz test 德育目标 Moral Objectives 2-1 理解高等数学理论知识对于刻画工程实践问题的重要意义。 Understand the significant meanings of the advanced mathematics in depicting the practical engineering problems. 重点: Key Points 正项级数收敛性的判别法 Convergence Tests for Series with Positive Terms 莱布尼茨判别法 Leibniz test 难点: Focal points 柯西收敛原理 Cauchy convergence principle 知识单元序号: Knowledge Unit No. 3 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 函数项级数 Functional Series 知识点: Knowledge Delivery 函数项级数的收敛域与和函数 Convergence domain and sum function of functional series 函数项级数的一致收敛的概念 Concept of uniform convergence of functional series 一致收敛函数项级数的性质 Properties of uniformly convergent functional series

函数项级数的一致收敛性判别法Uniform convergence tests for functional series幂级数及其收敛半径、收敛域Powerseries,radiusofconvergence、domainofconvergenceofpowerseries函数可展开为泰勒级数的充分必要条件Necessaryand sufficient conditionsfor thefunction tobeexpandedinto Taylor series几个基本初等函数的麦克劳林展开式Maclaurin expansion of some basic elementary functions傅立叶级数Fourierseries函数项级数的收敛域与和函数的概念Concepts of convergence domain and sum function了解:of functional seriesRecognize傅立叶级数的概念和狄利柯雷定理Concept of Fourier series and Dirichlet theorem函数项级数的一致收敛的概念理解:Concept of uniform convergence of functional seriesUnderstand函数展开成傅立叶级数Find the Fourier series ofa function学习目标:函数项级数一致收敛性判别法Learning ObjectivesUniform convergencetestsforfunctional series一致收敛函数项级数的和函数的分析性质Analytical properties of the sum function of a uniformly掌握:convergent series with function termsMaster幂级数收敛半径及收敛域的求法Methods for finding the convergence radius andconvergenceregionof power series基本初等函数的麦克劳林展开式Maclaurinexpansionofbasicelementaryfunctions2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, keytechniques and thecorecompetitiveness in the area of the China engineering in the world函数项级数的一致收敛性判别法重点:Uniform convergence test for functional seriesKey Points函数展开成幂级数Finding the power series of a function难点:函数项级数的一致收敛性判别法Focal pointsUniform convergence tests for functional series知识单元序号:支撑教学目标:X1-1, 1-2, 1-3, 1-4Knowledge Unit No.SLOs Supported知识单元名称向量与空间解析几何Unit TitleVectors and Solid Analytic Geometry6/12

6 / 12 函数项级数的一致收敛性判别法 Uniform convergence tests for functional series 幂级数及其收敛半径、收敛域 Power series, radius of convergence、domain of convergence of power series 函数可展开为泰勒级数的充分必要条件 Necessary and sufficient conditions for the function to be expanded into Taylor series 几个基本初等函数的麦克劳林展开式 Maclaurin expansion of some basic elementary functions 傅立叶级数 Fourier series 学习目标: Learning Objectives 了解: Recognize 函数项级数的收敛域与和函数的概念 Concepts of convergence domain and sum function of functional series 傅立叶级数的概念和狄利柯雷定理 Concept of Fourier series and Dirichlet theorem 理解: Understand 函数项级数的一致收敛的概念 Concept of uniform convergence of functional series 函数展开成傅立叶级数 Find the Fourier series of a function 掌握: Master 函数项级数一致收敛性判别法 Uniform convergence tests for functional series 一致收敛函数项级数的和函数的分析性质 Analytical properties of the sum function of a uniformly convergent series with function terms 幂级数收敛半径及收敛域的求法 Methods for finding the convergence radius and convergence region of power series 基本初等函数的麦克劳林展开式 Maclaurin expansion of basic elementary functions 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world 重点: Key Points 函数项级数的一致收敛性判别法 Uniform convergence test for functional series 函数展开成幂级数 Finding the power series of a function 难点: Focal points 函数项级数的一致收敛性判别法 Uniform convergence tests for functional series 知识单元序号: Knowledge Unit No. 4 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 向量与空间解析几何 Vectors and Solid Analytic Geometry

向量Vectors向量的乘积Productsofvectors知识点:平面与空间直线的方程Knowledge DeliveryEquationsforplanesandlines inspace曲面与空间曲线Surfaces and space curves了解曲面和空间曲线方程的概念RecognizeConceptsof surfacesand space curves理解:向量的数量积Scalarproductoftwovectors学习目标Understand向量的向量积VectorproductoftwovectorsLearning Objectives平面方程与空间直线方程的求法掌握:Findingthe equations of planes and lines in spaceMaster常用二次曲面Commonquadricsurface2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, key techniques and the corecompetitiveness in the area of the China engineeringin the world重点:平面方程与空间直线方程的求法Key PointsFinding the equations of planes and lines in space难点:曲面与空间曲线的画法Focal pointsDrawing of surface and space curve知识单元序号支撑教学目标51-1, 1-2, 1-3, 1-4Knowledge Unit No.SLOs Supported知识单元名称多元函数微分法及其应用Unit TitleDifferential Calculus of Multi-variable Functions and its Application多元函数的极限与连续性Limit and continuityofmulti-variablefunctions偏导数与全微分Partial derivatives and total differentials多元函数的求导法则Derivation rules of multi-variable functions知识点:多元函数微分学的几何应用Knowledge DeliveryGeometric application of differential calculus of multi-variablefunctions方向导数和梯度Directional derivatives and the gradient多元函数的极值与最值Extreme value、maxima and minima of multi-variable functions多元函数的极限与连续的概念与性质Concepts and properties of limit and continuity of学习目标了解:multi-variablefunctionsLearning ObjectivesRecognize偏导数和全微分的概念Concepts ofpartial derivatives and totaldifferentials ofmulti-variable functions7/12

7 / 12 知识点: Knowledge Delivery 向量 Vectors 向量的乘积 Products of vectors 平面与空间直线的方程 Equations for planes and lines in space 曲面与空间曲线 Surfaces and space curves 学习目标: Learning Objectives 了解: Recognize 曲面和空间曲线方程的概念 Concepts of surfaces and space curves 理解: Understand 向量的数量积 Scalar product of two vectors 向量的向量积 Vector product of two vectors 掌握: Master 平面方程与空间直线方程的求法 Finding the equations of planes and lines in space 常用二次曲面 Common quadric surface 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 重点: Key Points 平面方程与空间直线方程的求法 Finding the equations of planes and lines in space 难点: Focal points 曲面与空间曲线的画法 Drawing of surface and space curve 知识单元序号: Knowledge Unit No. 5 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 多元函数微分法及其应用 Differential Calculus of Multi-variable Functions and its Application 知识点: Knowledge Delivery 多元函数的极限与连续性 Limit and continuity of multi-variable functions 偏导数与全微分 Partial derivatives and total differentials 多元函数的求导法则 Derivation rules of multi-variable functions 多元函数微分学的几何应用 Geometric application of differential calculus of multi-variable functions 方向导数和梯度 Directional derivatives and the gradient 多元函数的极值与最值 Extreme value、maxima and minima of multi-variable functions 学习目标: Learning Objectives 了解: Recognize 多元函数的极限与连续的概念与性质 Concepts and properties of limit and continuity of multi-variable functions 偏导数和全微分的概念 Concepts of partial derivatives and total differentials of multi-variable functions

全微分形式的不变性Invariance of the total differential form隐函数的微分法理解:Differentiation of implicit functionsUnderstand空间曲线的切线与法平面、曲面的切平面、法线Tangent line and normal plane to a space curve、Tangent planes and normal lines to a surface偏导数和全微分的求法Finding the partial derivative and total differential掌握:二元函数的极值和条件极值MasterFinding local extreme values and constrained extremevalues ofa function of twovariables2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, key techniques and the corecompetitiveness in the area of the China engineering in the world偏导数和全微分的求法Finding the partial derivative and total differential重点:二元函数的极值和条件极值Key PointsFinding local extreme values and constrained extreme values of afunction of two variables多元函数极限的证明及求法难点:Proof and solutionof the limit of multi-variablefunctionsFocal points多元函数的高阶偏导数Higher-orderpartial derivatives of multi-variablefunctions知识单元序号:支撑教学目标:61-1, 1-2, 1-3, 1-4SLOs SupportedKnowledge Unit No重积分知识单元名称Unit TitleMultiple Integrals重积分的概念与性质Concepts and properties of multiple integrals重积分的计算知识点:Calculation of multiple integralsKnowledge Delivery重积分的应用Applications of multiple integrals含参变量的积分Integrals with parametric variables了解:重积分的概念RecognizeConcepts of multiple integrals理解:重积分的性质学习目标:UnderstandProperties of multiple integralsLearning Objectives二重积分的计算掌握:Calculation of double integralsMaster三重积分的计算Calculation of triple integrals8/12

8 / 12 理解: Understand 全微分形式的不变性 Invariance of the total differential form 隐函数的微分法 Differentiation of implicit functions 空间曲线的切线与法平面、曲面的切平面、法线 Tangent line and normal plane to a space curve、 Tangent planes and normal lines to a surface 掌握: Master 偏导数和全微分的求法 Finding the partial derivative and total differential 二元函数的极值和条件极值 Finding local extreme values and constrained extreme values of a function of two variables 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 重点: Key Points 偏导数和全微分的求法 Finding the partial derivative and total differential 二元函数的极值和条件极值 Finding local extreme values and constrained extreme values of a function of two variables 难点: Focal points 多元函数极限的证明及求法 Proof and solution of the limit of multi-variable functions 多元函数的高阶偏导数 Higher-order partial derivatives of multi-variable functions 知识单元序号: Knowledge Unit No. 6 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 重积分 Multiple Integrals 知识点: Knowledge Delivery 重积分的概念与性质 Concepts and properties of multiple integrals 重积分的计算 Calculation of multiple integrals 重积分的应用 Applications of multiple integrals 含参变量的积分 Integrals with parametric variables 学习目标: Learning Objectives 了解: Recognize 重积分的概念 Concepts of multiple integrals 理解: Understand 重积分的性质 Properties of multiple integrals 掌握: Master 二重积分的计算 Calculation of double integrals 三重积分的计算 Calculation of triple integrals

2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, key techniques and the corecompetitiveness in the area of the China engineering inthe world直角坐标、极坐标下二重积分的计算重点:Double integrals in rectangular and polar coordinates直角坐标、柱坐标、球坐标下三重积分的计算Key PointsTriple integrals in rectangular、cylindrical and spherical coordinates难点:三重积分的计算CalculationoftripleintegralsFocal points知识单元序号:支撑教学目标:71-1, 1-2, 1-3, 1-4Knowledge Unit No.SLOs Supported曲线积分与曲面积分知识单元名称Line Integrals and Surface IntegralsUnit Title对弧长的曲线积分、对坐标的曲线积分Line integrals withrespect to arc length、Line integrals with respecttocoordinates格林公式Green'sformula知识点:对面积的曲面积分、对坐标的曲面积分Knowledge DeliverySurfaceintegrals withrespectto surface areasurface integrals withrespect to coordinates高斯公式,斯托克斯公式Gauss formula and Stokes formula两类曲线积分、两类曲面积分的概念和性质了解:Concepts and properties of twokinds of line integralRecognizeand two kinds of surface integral理解:散度和旋度的概念和计算学习目标UnderstandConceptand calculationof divergenceandrotationLearning Objectives两类曲线积分、两类曲面积分的计算Calculation of two kinds of line integral and two kinds掌握:of surface integralMaster格林公式、高斯公式、斯托克斯公式Green formula、Gauss formula and Stokes formula2-2认知当前全球,数学理论的发展对提升中国工程关键技术及核德育目标心竞争力的重要意义。Moral ObjectivesUnderstand the technology development, key techniques and the corecompetitiveness in the area of the China engineering in the world两类曲线积分、两类曲面积分的计算重点:Calculation of two kinds of line integral and two kinds of surfaceKey Pointsintegral难点:积分与路径无关的等价条件Focal pointsEquivalentconditions ofpath independenceof lineintegrals9/12

9 / 12 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 重点: Key Points 直角坐标、极坐标下二重积分的计算 Double integrals in rectangular and polar coordinates 直角坐标、柱坐标、球坐标下三重积分的计算 Triple integrals in rectangular、cylindrical and spherical coordinates 难点: Focal points 三重积分的计算 Calculation of triple integrals 知识单元序号: Knowledge Unit No. 7 支撑教学目标: SLOs Supported 1-1,1-2,1-3,1-4 知识单元名称 Unit Title 曲线积分与曲面积分 Line Integrals and Surface Integrals 知识点: Knowledge Delivery 对弧长的曲线积分、对坐标的曲线积分 Line integrals with respect to arc length、Line integrals with respect to coordinates 格林公式 Green’s formula 对面积的曲面积分、对坐标的曲面积分 Surface integrals with respect to surface area、surface integrals with respect to coordinates 高斯公式,斯托克斯公式 Gauss formula and Stokes formula 学习目标: Learning Objectives 了解: Recognize 两类曲线积分、两类曲面积分的概念和性质 Concepts and properties of two kinds of line integral and two kinds of surface integral 理解: Understand 散度和旋度的概念和计算 Concept and calculation of divergence and rotation 掌握: Master 两类曲线积分、两类曲面积分的计算 Calculation of two kinds of line integral and two kinds of surface integral 格林公式、高斯公式、斯托克斯公式 Green formula、Gauss formula and Stokes formula 德育目标 Moral Objectives 2-2 认知当前全球,数学理论的发展对提升中国工程关键技术及核 心竞争力的重要意义。 Understand the technology development, key techniques and the core competitiveness in the area of the China engineering in the world. 重点: Key Points 两类曲线积分、两类曲面积分的计算 Calculation of two kinds of line integral and two kinds of surface integral 难点: Focal points 积分与路径无关的等价条件 Equivalent conditions of path independence of line integrals

四、教学安排TeachingSchedule注:可根据实际情况增减行数Note: Please add/reduce lines based on subject.学时(周)Hour(Week)教学内容TeachingContent理论实验实践PBLEXP.PRAC.LECT实数连续性10000Continuity of real numbers数项级数01200Series with Constant Terms函数项级数00010Functional Series向量代数与空间解析几何00100Vectors and Solid Analytic Geometry多元函数微分法及其应用20000Differential Calculus of Multi-variableFunctions and its Application重积分00140Multiple Integrals曲线积分与曲面积分00200Line Integrals and Surface Integrals96000总计Total五、教学方法TeachingMethodology注:可根据实际情况增减行数或修改内容Note: Please add/reduce lines or revise content based on subject.勾选Check教学方法与特色TeachingMethodology&Characters课堂教学:板书与多媒体相结合、以板书为主口Combinationofblackboardwritingandmultimedia,mainlyblackboardwriting实践能力传授:理论与行业、实际案例相结合团Combiningtheorywithindustrialpracticalproblems课程思政建设:知识讲授与德育相结合日Knowledgedelivery with ethic educationPBL教学:Problem-based learning其他:口Other:10 /12

10 / 12 四、教学安排 Teaching Schedule 注:可根据实际情况增减行数 Note: Please add/reduce lines based on subject. 教学内容 Teaching Content 学时(周)Hour(Week) 理论 LECT. 实验 EXP. 实践 PRAC. PBL 实数连续性 Continuity of real numbers 10 0 0 0 数项级数 Series with Constant Terms 12 0 0 0 函数项级数 Functional Series 10 0 0 0 向量代数与空间解析几何 Vectors and Solid Analytic Geometry 10 0 0 0 多元函数微分法及其应用 Differential Calculus of Multi-variable Functions and its Application 20 0 0 0 重积分 Multiple Integrals 14 0 0 0 曲线积分与曲面积分 Line Integrals and Surface Integrals 20 0 0 0 总计 Total 96 0 0 0 五、教学方法 Teaching Methodology 注:可根据实际情况增减行数或修改内容 Note: Please add/reduce lines or revise content based on subject. 勾选 Check 教学方法与特色 Teaching Methodology & Characters  课堂教学:板书与多媒体相结合、以板书为主 Combination of blackboard writing and multimedia, mainly blackboard writing  实践能力传授:理论与行业、实际案例相结合 Combining theory with industrial practical problems  课程思政建设:知识讲授与德育相结合 Knowledge delivery with ethic education ☐ PBL 教学: Problem-based learning ☐ 其他: Other:

共12页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档