西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories

Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24
Chapter 8 Fuzzy Associative Memories Li Lin 2004-11-24

CONTENTS Review a Fuzzy Systems as between-cube mapping Fuzzy and Neural Function Estimators Fuzzy Hebb FAMs ■Adaptive FAMs
CONTENTS ◼ Review ◼ Fuzzy Systems as between-cube mapping ◼ Fuzzy and Neural Function Estimators ◼ Fuzzy Hebb FAMs ◼ Adaptive FAMs

Review In Chapter 2,we have mentioned BAM theorem Chapter 7 discussed fuzzy sets as points in the unit hypercube What is associative memories?
Review ◼ In Chapter 2, we have mentioned BAM theorem ◼ Chapter 7 discussed fuzzy sets as points in the unit hypercube ◼ What is associative memories?

Fuzzy systems Koskos: Input as Output universe of universe of discourse discourse Fig.1 A fuzzy system The continuous fuzzy system behave as associative memories,or fuzzy associative memories
Fuzzy systems Koskos: fuzzy systems as between-cube mapping n I p I Fig.1 A fuzzy system Output universe of discourse Input universe of discourse The continuous fuzzy system behave as associative memories, or fuzzy associative memories

Fuzzy and neural function estimators Fuzzy and neural systems estimates sampled function and behave as associative memories Similarities: 1.They are model-free estimator 2.Learn from samples 3.Numerical,unlike AI Differences: They differ in how to estimate the sampled function 1.During the system construction 2.The kind of samples used
Fuzzy and neural function estimators ◼ Fuzzy and neural systems estimates sampled function and behave as associative memories ◼ Similarities: 1. They are model-free estimator 2. Learn from samples 3. Numerical, unlike AI ◼ Differences: They differ in how to estimate the sampled function 1. During the system construction 2. The kind of samples used

Differences: 3.Application 4.How they represent and store those samples A2 B2 5.How they associatively inference Fig.2 Function f maps domains X to range Y
Fig.2 Function f maps domains X to range Y 3. Application 4. How they represent and store those samples 5. How they associatively inference Differences:

Neural vs.fuzzy representation of structured knowledge ■Neural network problems: 1.computational burden of training 2.system inscrutability There is no natural inferential audit tail,like an computational black box. 3.sample generation
Neural vs. fuzzy representation of structured knowledge ◼ Neural network problems: 1. computational burden of training 2. system inscrutability There is no natural inferential audit tail, like an computational black box. 3. sample generation

Neural vs.fuzzy representation of structured knowledge Fuzzy systems 1.directly encode the linguistic sample (HEAVY,LONGER)in a matrix 2.combine the numerical approaches with the symbolic one Fuzzy approach does not abandon neural-network, it limits them to unstructured parameter and state estimate,pattern recognition and cluster formation
Neural vs. fuzzy representation of structured knowledge ◼ Fuzzy systems 1. directly encode the linguistic sample (HEAVY,LONGER) in a matrix 2. combine the numerical approaches with the symbolic one ◼ Fuzzy approach does not abandon neural-network, it limits them to unstructured parameter and state estimate, pattern recognition and cluster formation

FAMs as mapping ■ Fuzzy associative memories are transformations FAM map fuzzy sets to fuzzy sets,units cube to units cube. Access the associative matrices in parallel and store them separately Numerical point inputs permit this simplification binary input-out FAMs,or BIOFAMs
FAMs as mapping ◼ Fuzzy associative memories are transformations FAM map fuzzy sets to fuzzy sets, units cube to units cube. ◼ Access the associative matrices in parallel and store them separately Numerical point inputs permit this simplification binary input-out FAMs, or BIOFAMs

FAMs as mapping Light Medium Heavy Short Medium Long 0 0 10 20 30 50 100 150 xn=200 ym=40 Green light duration Traffic density Fig.3 Three possible fuzzy subsets of traffic-density and green light duration,space X and Y
FAMs as mapping = 200 n x 50 100 150 0 1 Light Medium Heavy Traffic density = 40 n 10 20 30 y 0 1 Short Medium Long Green light duration Fig.3 Three possible fuzzy subsets of traffic-density and green light duration, space X and Y
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)08. 模糊与神经网络的比较——以倒车系统为例 Comparison of Fuzzy and Neural Truck Backer-Upper Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)07. 模糊联想记忆 Fuzzy Associative Memories(FAM).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)06. 模糊与概率 Fuzziness versus Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)05. 结构和平衡 Architectures and Equilibria.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)01.Neuronal Dynamics——Activations and Signals(主讲:高新波).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-2 Fuzzy Associative Memories 模糊联想记忆 FUZZY ASSOCIATIVE MEMMORIESⅡ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-2 模糊倒车控制系统——拖斗拖车.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-1 模糊与神经网络倒车系统比较.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 02 NEURAL DYNAMIC1:ACTIVATIONHS AND SIGNALS(主讲:高新波).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-1 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-2 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-1 Synaptic Dynamics:Unsupervised Learning Part Ⅰ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-2 Synaptic Dynamics:Unsupervised Learning Part Ⅱ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-3 Part3 Differential Heb learning & Differential Competitive learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-1 突触动力学Ⅱ——有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-2 Backpropagation Algorithm.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-3 突触动力学Ⅱ:有监督的学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 06 Architecture and Equilibria 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-1 模糊与概率(一).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-2 模糊与概率(二).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-1 Fuzzy Associative Memories(1/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-2 Fuzzy Associative Memories(2/3).ppt