西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-2 Synaptic Dynamics:Unsupervised Learning Part Ⅱ

Synaptic Dynamics: Unsupervised Learning PartⅡ Wang Xiumei 2023/7/9
2023/7/9 Synaptic Dynamics: Unsupervised Learning Part Ⅱ Wang Xiumei

1.Stochastic unsupervised learning and stochastic equilibrium; 2.Signal Hebbian Learning; 3.Competitive Learning. 2023/7/9
2023/7/9 1.Stochastic unsupervised learning and stochastic equilibrium; 2.Signal Hebbian Learning; 3.Competitive Learning

Stochastic unsupervised learning stochastic equilibrium (1)The noisy random unsupervised learning law; (2)Stochastic equilibrium; (3)The random competitive learning law; (4)The learning vector quantization system. 2023/7/9
2023/7/9 1.Stochastic unsupervised learning and stochastic equilibrium ⑴ The noisy random unsupervised learning law; ⑵ Stochastic equilibrium; ⑶ The random competitive learning law; ⑷ The learning vector quantization system

The noisy random unsupervised learning law The random-signal Hebbian learning law: dmj=-mi dt+S,(x,)S,(y)dt+dB (4-92) (B,(t)}denotes a Browian-motion diffusion process,each term in (4-92)demotes a separate random process. 2023/7/9
2023/7/9 The noisy random unsupervised learning law The random-signal Hebbian learning law: (4-92) denotes a Browian-motion diffusion process, each term in (4-92)demotes a separate random process. ( ) ( ) ij ij i i i i ij dm m dt S x S y dt dB = − + + { ( )} B t ij

The noisy random unsupervised learning law dB Using noise relationship: dt we can rewrite (4-92): m,=-m+S,(x)S,(y,)+n, (4-93) We assume the zero-mean, Gaussian white- noise process in(t);and use equation f(x,y,M)=-m,+S,(x)S,y,) 2023/7/9
2023/7/9 The noisy random unsupervised learning law • Using noise relationship: we can rewrite (4-92): (4-93) We assume the zero-mean, Gaussian whitenoise process ,and use equation : ( ) ( ) m m S x S y n ij ij i i j j ij = − + + dB n dt = { ( )} ij n t ( , , ) ( ) ( ) ij ij i i j j f x y M m S x S y = − +

The noisy random unsupervised learning law We can get a noisy random unsupervised learning law my =fi(X,Y,M)+n (4-94) Lemma Eiv aoi (4-95) is finite variance. proof:P132 2023/7/9
2023/7/9 The noisy random unsupervised learning law We can get a noisy random unsupervised learning law (4-94) Lemma: (4-95) is finite variance. proof: P132 m f X Y M n ij = + ij ij ( , , ) 2 ij E m ij ij

The noisy random unsupervised learning law The lemma implies two points: 1,stochastic synapses vibrate in equilibrium and they vibrate at least as much as the driving noise process vibrates; 2,the synaptic vector m,changes or vibrate at every instant t,and equals a constant value.m,wanders in a brownian motion about the c constant value Fl mi/. 2023/7/9
2023/7/9 The noisy random unsupervised learning law The lemma implies two points: 1, stochastic synapses vibrate in equilibrium, and they vibrate at least as much as the driving noise process vibrates; 2,the synaptic vector changes or vibrate at every instant t, and equals a constant value. wanders in a brownian motion about the constant value E[ ]. mj mj mj

Stochastic equilibrium When synaptic vector m,stops moving, synaptic equilibrium occurs in "steady state”, m,=0 (4-101) synaptic vector m,reaches synaptic equilibrium when only the random noise vector n change (4-103) 2023/7/9
2023/7/9 Stochastic equilibrium When synaptic vector stops moving, synaptic equilibrium occurs in “steady state”, (4-101) synaptic vector reaches synaptic equilibrium when only the random noise vector change : (4-103) mj mj mj mj = 0 m n j j = j n

The random competitive learning law The random competitive learning law m=S,(y,)汇S(X)-m,]+n The random linear competitive learning law m,=S,(y,)儿X-m,]+n 2023/7/9
2023/7/9 The random competitive learning law The random competitive learning law The random linear competitive learning law m S y S X m n j = − + j j j j ( ) ( ) m S y X m n j = − + j j j j ( )

The earning vector guantization system. m,(k+1)=m,(k)+cx[X&-m,(k)] Xk∈D m,(k+I)=m,(k)-c[XA-m,(k)] Xk年D m,(k+1)=m,(k) i丰j 2023/7/9
2023/7/9 The learning vector quantization system. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 j j k k j k j j j k k j k j i i m k m k c X m k X D m k m k c X m k X D m k m k i j + = + − + = − − + =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-1 Synaptic Dynamics:Unsupervised Learning Part Ⅰ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-2 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-1 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 02 NEURAL DYNAMIC1:ACTIVATIONHS AND SIGNALS(主讲:高新波).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-1 模糊与神经网络倒车系统比较.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-2 模糊倒车控制系统——拖斗拖车.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-2 Fuzzy Associative Memories 模糊联想记忆 FUZZY ASSOCIATIVE MEMMORIESⅡ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-3 Part3 Differential Heb learning & Differential Competitive learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-1 突触动力学Ⅱ——有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-2 Backpropagation Algorithm.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-3 突触动力学Ⅱ:有监督的学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 06 Architecture and Equilibria 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-1 模糊与概率(一).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-2 模糊与概率(二).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-1 Fuzzy Associative Memories(1/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-2 Fuzzy Associative Memories(2/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-3 Fuzzy Associative Memories(3/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 09 模糊与神经网络的比较——以倒车系统为例.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(1/2).ppt
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第一章 绪论——模糊聚类分析(主讲:高新波).pdf
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第二章 模糊理论基础 第一部分 普通集合、模糊集合、分解定理与扩展原理.pdf
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第二章 模糊理论基础 第二部分 模糊不确定性度量、模糊集的模糊性度量、模糊事件的概率.pdf
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第二章 模糊理论基础 第三部分 模糊数及其扩展运算、模糊关系.pdf
- 浙江开放大学:《液压与气压传动》模拟试题一及答案.doc
- 国家开放大学:2006—2007学年第一学期“开放本科”机械制造专业机电一体化系统设计基础期末试题(1月).pdf