西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-1 NEURONAL DYNAMICS 2:ACTIVATION MODELS

3.1 NEURONAL DYNAMICAL SYSTEM Neuronal activations change with time.The way they change depends on the dynamical equations as following: x=g(Fx,Fy…) (3-1) y=h(Fx,Fy,…y (3-2) 2006.10.9
2006.10.9 3.1 NEURONAL DYNAMICAL SYSTEM Neuronal activations change with time. The way they change depends on the dynamical equations as following: x = g(FX ,FY ,) • y = h(FX ,FY ,) • (3-1) (3-2)

3.2 ADDITIVE NEURONAL DYNAMICS first-order passive decay model In the absence of external or neuronal stimuli, the simplest activation dynamics model is: xi=一xi (3-3) (3-4) 2006.10.9
2006.10.9 In the absence of external or neuronal stimuli, the simplest activation dynamics model is: i xi = −x • y j = −yj • 3.2 ADDITIVE NEURONAL DYNAMICS (3-3) (3-4) ◆ first-order passive decay model

3.2 ADDITIVE NEURONAL DYNAMICS since for any finite initial condition x,(t)=x,(0)et The membrane potential decays exponentially quickly to its zero potential. 2006.10.9
2006.10.9 3.2 ADDITIVE NEURONAL DYNAMICS t xi t xi e − ( ) = (0) since for any finite initial condition The membrane potential decays exponentially quickly to its zero potential

3.2 ADDITIVE NEURONAL DYNAMICS Passive Membrane Decay Passive-decay rate ,>0 scales the rate to the membrane's resting potential. xi =-Ajxi solution:. ,()=x,(0)e4 Passive-decay rate measures:the cell membrane's resistance or friction"to current flow. 2006.10.9
2006.10.9 Passive-decay rate Ai 0 scales the rate to the membrane’s resting potential. solution : Passive-decay rate measures: the cell membrane’s resistance or “friction” to current flow. i i i x = −A x • 3.2 ADDITIVE NEURONAL DYNAMICS ◆ Passive Membrane Decay -A t i i i x (t) = x ( 0 )e

property Pay attention to 4;property The larger the passive-decay rate,the faster the decay--the less the resistance to current flow
Ai The larger the passive-decay rate,the faster the decay--the less the resistance to current flow. Pay attention to property property

3.2 ADDITIVE NEURONAL DYNAMICS Membrane Time Constants The membrane time constant C.scales the time variable of the activation dynamical system. The multiplicative constant model: Cixi=-AiXi (3一8) 2006.10.9
2006.10.9 The membrane time constant scales the time variable of the activation dynamical system. The multiplicative constant model: Ci i i i i C x = -A x • (3-8) 3.2 ADDITIVE NEURONAL DYNAMICS ◆ Membrane Time Constants

Solution and property ■solution x;(t)=x,(0)e property The smaller the capacitance the faster things change As the membrane capacitance increases toward positive infinity,membrane fluctuation slows to stop
Solution and property solution t C A i i i t x e − x ( ) = (0) i property The smaller the capacitance ,the faster things change As the membrane capacitance increases toward positive infinity,membrane fluctuation slows to stop

3.2 ADDITIVE NEURONAL DYNAMICS Membrane Resting Potentials Definition Define resting Potential P as the activation value to which the membrane potential equilibrates in the absence of external or neuronal inputs: Cixi=-AiXi+P (3-11) Solutions Ait x1(t)=x;(0)e + (3-12) 2006.10.9
2006.10.9 3.2 ADDITIVE NEURONAL DYNAMICS Define resting Potential as the activation value to which the membrane potential equilibrates in the absence of external or neuronal inputs: Pi i i i i Ci x = -A x + P • Solutions (1- e ) A P x (t) x (0)e t C A - i i t C A - i i i i i i = + Definition (3-11) (3-12) ◆ Membrane Resting Potentials

Note The time-scaling capacitance dose not affect the asymptotic or steady-state solution. The steady-state solution does not depend on the finite initial condition. In resting case,we can find the solution quickly
Note The time-scaling capacitance dose not affect the asymptotic or steady-state solution. The steady-state solution does not depend on the finite initial condition. In resting case,we can find the solution quickly

3.2 ADDITIVE NEURONAL DYNAMICS Additive External Input ■Add input Apply a relatively constant numeral input to a neuron. ● Xi=Xi+li (3-13) solution x;()=x(0)et+I;(1-et) (3-14)
Add input Apply a relatively constant numeral input to a neuron. i i xi = -x + I • solution x (t) x (0)e I (1- e ) -t i -t i = i + (3-13) (3-14) ◆ Additive External Input 3.2 ADDITIVE NEURONAL DYNAMICS
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 02 NEURAL DYNAMIC1:ACTIVATIONHS AND SIGNALS(主讲:高新波).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-1 模糊与神经网络倒车系统比较.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-2 模糊倒车控制系统——拖斗拖车.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-2 Fuzzy Associative Memories 模糊联想记忆 FUZZY ASSOCIATIVE MEMMORIESⅡ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)08. 模糊与神经网络的比较——以倒车系统为例 Comparison of Fuzzy and Neural Truck Backer-Upper Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)07. 模糊联想记忆 Fuzzy Associative Memories(FAM).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)06. 模糊与概率 Fuzziness versus Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-2 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-1 Synaptic Dynamics:Unsupervised Learning Part Ⅰ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-2 Synaptic Dynamics:Unsupervised Learning Part Ⅱ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-3 Part3 Differential Heb learning & Differential Competitive learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-1 突触动力学Ⅱ——有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-2 Backpropagation Algorithm.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-3 突触动力学Ⅱ:有监督的学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 06 Architecture and Equilibria 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-1 模糊与概率(一).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-2 模糊与概率(二).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-1 Fuzzy Associative Memories(1/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-2 Fuzzy Associative Memories(2/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 08-3 Fuzzy Associative Memories(3/3).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 09 模糊与神经网络的比较——以倒车系统为例.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(1/2).ppt
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第一章 绪论——模糊聚类分析(主讲:高新波).pdf
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第二章 模糊理论基础 第一部分 普通集合、模糊集合、分解定理与扩展原理.pdf
- 西安电子科技大学:《模糊理论与模糊系统 Fuzzy Theory and Fuzzy Systems》课程教学资源(课件讲义)第二章 模糊理论基础 第二部分 模糊不确定性度量、模糊集的模糊性度量、模糊事件的概率.pdf