西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡

Chapter 6 Architecture and Equilibra 结构和平衡 刘瑞华罗雪梅 导师:曾平
Architecture and Equilibra 结构和平衡 刘瑞华 罗雪梅 导师:曾平 Chapter 6

Chapter 6 Architecture and Equilibria Perface lyaoynov stable theorem S L I:整个系统集合 S:稳定系统集合 2004.11.10 L:可由李亚普诺夫函数判定稳定的系统集合 2
2004.11.10 2 Chapter 6 Architecture and Equilibria Perface lyaoynov stable theorem I I S L I : 整个系统集合 S : 稳定系统集合 L : 可由李亚普诺夫函数判定稳定的系统集合

Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system Classify Neutral network model By their synaptic connection topolgies and by how learning modifies their connection topologies synaptic connection topolgies 1.feedforward.if No closed synaptic loops 2.feedback if closed synapticloops orfeedback pathways how learning modifies their connection topologies 1.Supervised learning use class-membership inf ormation of training samplings 2.Unsup ervised learning use unlabelled training samplings 2004.11.10 3
2004.11.10 3 Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system Classify Neutral network model By their synaptic connection topolgies and by how learning modifies their connection topologies feedback i f closed synapticloops orfeedback pathways feedforward i f No closed synaptic loops 2. . 1. . − Un ervised learning use unlabelled training samplings training samplings Supervised learning use class membership ormation of 2. sup : 1. : inf synaptic connection topolgies how learning modifies their connection topologies

Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system Decode Feedforward Feedback s三C刀 Gradiedescent LMS Recurrent BackPropagation BackPropagation =t可 Reinforcement Learing Vetor Quantization RABAM Broenian annealing Self-Organization Maps ABAM Competitve learning ART-2 Counter-propagation BAM-Cohen-Grossberg Model Hopfield circuit Brain-state-In Box Adaptive-Resonance ART-1 ART-2 2004.11.10 Neural NetWork Taxonomy
2004.11.10 4 Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system Gradiedescent LMS BackPropagation Reinforcement Learing Recurrent BackPropagation Vetor Quantization Self-Organization Maps Competitve learning Counter-propagation RABAM Broenian annealing ABAM ART-2 BAM-Cohen-Grossberg Model Hopfield circuit Brain-state-In_Box Adaptive-Resonance ART-1 ART-2 Feedforward Feedback Decode d e s i v r e p u S d e s i v r e p u s n U e d o c n E Neural NetWork Taxonomy

Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system Three stochastic gradient systems represent the three main categories: 1)Feedforward supervised neural networks trained with the backpropagation(BP)algorithm. 2)Feedforward unsupervised competitive learning or adaptive vector quantization(AVQ)networks 3)Feedback unsupervised random adaptive bidirectional associative memory(RABAM)networks. 2004.11.10 5
2004.11.10 5 Chapter 6 Architecture and Equilibria 6.1 Neutral Network As Stochastic Gradient system ▪ Three stochastic gradient systems represent the three main categories: 1)Feedforward supervised neural networks trained with the backpropagation(BP)algorithm. 2)Feedforward unsupervised competitive learning or adaptive vector quantization(AVQ)networks. 3)Feedback unsupervised random adaptive bidirectional associative memory(RABAM)networks

Chapter 6 Architecture and Equilibria 6.2 Global Equi libra:convergence and stability Neural network synapses neurons three dynamical systems: synapses dynamical systems M neuons dynamical systems X joint synapses-neurons dynamical systems (X,M) Historically,Neural engineers study the first or second neural network.They usually study learning in feedforward neural networks and neural stability in nonadaptive feedback neural networks.RABAM and ART network depend on joint equilibration of the synaptic and neuronal dynamical systems. 2004.11.10 6
2004.11.10 6 Chapter 6 Architecture and Equilibria 6.2 Global Equilibra:convergence and stability Neural network :synapses , neurons three dynamical systems: synapses dynamical systems neuons dynamical systems joint synapses-neurons dynamical systems Historically,Neural engineers study the first or second neural network.They usually study learning in feedforward neural networks and neural stability in nonadaptive feedback neural networks. RABAM and ART network depend on joint equilibration of the synaptic and neuronal dynamical systems. ' M ' X ( , ) ' ' X M

Chapter 6 Architecture and Equilibria 6.2 Global Equi libra:convergence and stability Equilibrium is steady state Convergence is synaptic equilibrium.M=0 6.1 Stability is neuronal equilibrium. X=0 6.2 More generally neural signals reach steady state even though the activations still change.We denote steady state in the neuronal field F =0 6.3 Neuron fluctuate faster than synapses fluctuate Stability-Convergence dilemma The synapsed slowly encode these neural patterns being learned;but when the synapsed change ,this tends 2004d ihdo the stable neuronal patterns
2004.11.10 7 Chapter 6 Architecture and Equilibria 6.2 Global Equilibra:convergence and stability Equilibrium is steady state . Convergence is synaptic equilibrium. Stability is neuronal equilibrium. More generally neural signals reach steady state even though the activations still change.We denote steady state in the neuronal field Neuron fluctuate faster than synapses fluctuate. Stability - Convergence dilemma : The synapsed slowly encode these neural patterns being learned; but when the synapsed change ,this tends to undo the stable neuronal patterns. M = 0 6.1 • X = 0 6.2 • Fx Fx = 0 6.3 •

Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Al gor ithms Competitve learning adpatively qunatizes the input pattern space R" p(x)charcaterizes the continuous distributions of pattern AVO X→X centroid We shall prove that: Competitve AVQ synaptic vector converge to pattern-class centroid.They vibrate about the cemtroid in a Browmian motion 2004.11.10 8
2004.11.10 8 Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Algorithms We shall prove that: Competitve AVQ synaptic vector converge to pattern-class centroid. They vibrate about the centroid in a Browmian motion m j Competitve learning adpatively qunatizes the input pattern space charcaterizes the continuous distributions of pattern. n R p(x) X X centroid AVQ ^ →

Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Algor ithms Comptetive AVQ Stochastic Differential Equations Pattern Rn R”=DUD2UD3UDK 6.6 D,∩Dj=Φ,fi≠j 6.7 The Random Indicator function... [1fx∈D Io()0if xeD 6-8 Supervised learning algorithms depend explicitly on the indicator functions.Unsupervised learning algorthms don't require this pattern-class information. ID.xp(x)dx Centriod 6-9 ID.p(x)dx 2004.11.10 9
2004.11.10 9 Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Algorithms , 6.7 .... 6.6 1 2 3 if i j j D i D K Rn D D D D PatternRn = = The Random Indicator function Supervised learning algorithms depend explicitly on the indicator functions.Unsupervised learning algorthms don’t require this pattern-class information. Centriod D D D DK I ,I ,I ,......I 1 2 3 6 8 0 1 ( ) − = j j D if x D if x D I x j 6 9 ( ) ( ) ^ − = j D p x dx j D xp x dx j x Comptetive AVQ Stochastic Differential Equations

Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Al gor ithms The Stochastic unsupervised competitive learning law: ● m)=S0yj儿x-m]+nj 6-10 We want to show that at equilibrium m=x We assume S,≈I,(x) 6-11 The equilibrium and convergence depend on approximation (6-11),so 6-10 reduces m=1D,(x)[x-m]+n 6-12 2004.11.10 10
2004.11.10 10 Chapter 6 Architecture and Equilibria 6.3 Synaptic convergence to centroids:AVQ Algorithms The Stochastic unsupervised competitive learning law: = ( )[ − ]+ 6 −10 • j j j mj nj m S y x We want to show that at equilibrium mj = xj S I (x) 6−11 Dj j We assume The equilibrium and convergence depend on approximation (6-11) ,so 6-10 reduces : = ( )[ − ]+ 6 −12 • j D mj nj m I x x j
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)08. 模糊与神经网络的比较——以倒车系统为例 Comparison of Fuzzy and Neural Truck Backer-Upper Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)07. 模糊联想记忆 Fuzzy Associative Memories(FAM).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)06. 模糊与概率 Fuzziness versus Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)05. 结构和平衡 Architectures and Equilibria.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)01.Neuronal Dynamics——Activations and Signals(主讲:高新波).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)选择性集成 Selective Ensemble(南京大学:周志华).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)机器学习研究进展(南京大学:王珏).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)进化计算 SOFT COMPUTING Evolutionary Computing.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-2 Fuzzy Associative Memories 模糊联想记忆 FUZZY ASSOCIATIVE MEMMORIESⅡ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-2 模糊倒车控制系统——拖斗拖车.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 11 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking control system.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 09-1 模糊与神经网络倒车系统比较.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 02 NEURAL DYNAMIC1:ACTIVATIONHS AND SIGNALS(主讲:高新波).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-1 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 03-2 NEURONAL DYNAMICS 2:ACTIVATION MODELS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-1 Synaptic Dynamics:Unsupervised Learning Part Ⅰ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-2 Synaptic Dynamics:Unsupervised Learning Part Ⅱ.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 04-3 Part3 Differential Heb learning & Differential Competitive learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-1 突触动力学Ⅱ——有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-2 Backpropagation Algorithm.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 05-3 突触动力学Ⅱ:有监督的学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 06 Architecture and Equilibria 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2006)Chapter 07-1 模糊与概率(一).ppt