西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(1/2)

NEURONAL DYNAMICS 2: ACTIVATION MODELS 2002.10.8
2002.10.8 NEURONAL DYNAMICS 2: ACTIVATION MODELS

Chapter 3.Neuronal Dynamics 2 Activation Models 3.1 Neuronal dynamical system Neuronal activations change with time.The way they change depends on the dynamical equations as following: ●】 x=g(FX,Fy,…〉 (3-1) y=h(Fx,Fy,…) (3-2) 2002.10.8
2002.10.8 Chapter 3. Neuronal Dynamics 2 :Activation Models Neuronal activations change with time. The way they change depends on the dynamical equations as following: x = g(FX ,FY ,) • y = h(FX ,FY ,) • (3-1) (3-2) 3.1 Neuronal dynamical system

3.1 ADDITIVE NEURONAL DYNAMICS first-order passive decay model In the absence of external or neuronal stimuli, the simplest activation dynamics model is: xi=一xi (3-3) (3-4) 2002.10.8
2002.10.8 In the absence of external or neuronal stimuli, the simplest activation dynamics model is: i xi = −x • y j = −yj • 3.1 ADDITIVE NEURONAL DYNAMICS (3-3) (3-4) first-order passive decay model

3.1 ADDITIVE NEURONAL DYNAMICS since for any finite initial condition x,(t)=x,(0)et The membrane potential decays exponentially quickly to its zero potential
t xi t xi e − ( ) = (0) since for any finite initial condition 3.1 ADDITIVE NEURONAL DYNAMICS The membrane potential decays exponentially quickly to its zero potential

Passive Membrane Decay Passive-decay rate ,>0 scales the rate to the membrane's resting potential. ● xi=-AiXi solution :(=0) Passive-decay rate measures:the cell membrane's resistance or "friction"to current flow. 2002.10.8
2002.10.8 Passive Membrane Decay Passive-decay rate Ai 0 scales the rate to the membrane’s resting potential. solution : At i i i x t x e − ( )= (0) Passive-decay rate measures: the cell membrane’s resistance or “friction” to current flow. i i i x = −A x •

property Pay attention to 4;property The larger the passive-decay rate,the faster the decay--the less the resistance to current flow
Ai The larger the passive-decay rate,the faster the decay--the less the resistance to current flow. Pay attention to property property

Membrane Time Constants The membrane time constant C scales the time variable of the activation dynamical system. The multiplicative constant model: ● Cixi=-AiXi (3-8)》 2002.10.8
2002.10.8 Membrane Time Constants The membrane time constant scales the time variable of the activation dynamical system. The multiplicative constant model: Ci i i i i C x = -A x • (3-8)

Solution and property ■solution x;(t)=x,(0)e property The smaller the capacitance the faster things change As the membrane capacitance increases toward positive infinity,membrane fluctuation slows to stop
Solution and property solution t C A i i i t x e − x ( ) = (0) i property The smaller the capacitance ,the faster things change As the membrane capacitance increases toward positive infinity,membrane fluctuation slows to stop

Membrane Resting Potentials Definition Define resting Potential P as the activation value to which the membrane potential equilibrates in the absence of external or neuronal inputs: Cixi=-Aixi+Pi (3-11) ■Solutions Ait x(t)=x;(0)e C. (3-12) 2002.10.8
2002.10.8 Membrane Resting Potentials Define resting Potential as the activation value to which the membrane potential equilibrates in the absence of external or neuronal inputs: Pi i i i i Ci x = -A x + P • Solutions (1- e ) A P x (t) x (0)e t C A - i i t C A - i i i i i i = + Definition (3-11) (3-12)

Note The capacitance appear in the index of the solution,it is called time-scaling capacitance. It does no affect the steady-state solution and does not depend on the finite initial condition. In resting case,we can find the solution quickly
Note The capacitance appear in the index of the solution,it is called time-scaling capacitance. It does no affect the steady-state solution and does not depend on the finite initial condition. In resting case,we can find the solution quickly
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)01.Neuronal Dynamics——Activations and Signals(主讲:高新波).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)选择性集成 Selective Ensemble(南京大学:周志华).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)机器学习研究进展(南京大学:王珏).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)进化计算 SOFT COMPUTING Evolutionary Computing.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)模糊系统与模糊逻辑 Fuzzy Theory.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)模糊神经网络 Neuro-fuzzy Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)人工神经网络 Artificial Neural Networks.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)有关人工智能的故事.doc
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)人工智能 AI.ppt
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第1章 用于机器人的Ubuntu linux.ppt
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第四章 机器人的逆向运动学.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第六章 机器人的动力学.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第五章 速度和静态力.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第二章 空间描述和变换.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第九章 机器人的线性控制.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第三章 机器人的顺向运动学.pdf
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第3章 机器人编程的Python基础知识.ppt
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第2章 机器人编程的C++基础知识.ppt
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第一章 机器人概述(主讲:杨智勇).pdf
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)绪论、第1章 极限与配合及检测.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)05. 结构和平衡 Architectures and Equilibria.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)06. 模糊与概率 Fuzziness versus Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)07. 模糊联想记忆 Fuzzy Associative Memories(FAM).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)08. 模糊与神经网络的比较——以倒车系统为例 Comparison of Fuzzy and Neural Truck Backer-Upper Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt