西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(2/2)

Review 1.Neuronal Dynamical Systems We describe the neuronal dynamical systems by first- order differential or difference equations that govern the time evolution of the neuronal activations or membrane potentials
1.Neuronal Dynamical Systems We describe the neuronal dynamical systems by firstorder differential or difference equations that govern the time evolution of the neuronal activations or membrane potentials. ( , , ) ( , , ) X Y X Y y h F F x g F F = = Review

Review 4.Additive activation models 衣,=-4x,+∑S,(y)ni+1, 立,=-A,y,+∑S,(x)m,+J Hopfield circuit: i=1 1.Additive autoassociative model; 2.Strictly increasing bounded signal function (S>0); 3.Synaptic connection matrix is symmetric(M=M). Cx=R+s,m,+
4.Additive activation models = = = − + + = − + + n i j j j i i ij j p j i i i j j ji i y A y S x m J x A x S y n I 1 1 ( ) ( ) Hopfield circuit: 1. Additive autoassociative model; 2. Strictly increasing bounded signal function ; 3. Synaptic connection matrix is symmetric . (S 0) ( ) T M = M = − + + j j j ji i i i i i S x m I R x C x ( ) Review

Review 5.Additive bivalent models x+1=∑S,Oy5)m:+1 y=∑S,(x)m,+1 Lyapunov Functions Cannot find a lyapunov function,nothing follows; Can find a lyapunov function,stability holds
5.Additive bivalent models = + = + + + n i ij j k i i k j p j ji i k j j k i y S x m I x S y m I ( ) ( ) 1 1 Lyapunov Functions Cannot find a lyapunov function,nothing follows; Can find a lyapunov function,stability holds. Review

Review A dynamics system is stable,ifL≤O asymptotically stable,if <O Monotonicity of a lyapunov function is a sufficient not necessary condition for stability and asymptotic stability
A dynamics system is stable , if ; asymptotically stable, if . L 0 L 0 Monotonicity of a lyapunov function is a sufficient not necessary condition for stability and asymptotic stability. Review

Review Bivalent BAM theorem. Every matrix is bidirectionally stable for synchronous or asynchronous state changes. Synchronous:update an entire field of neurons at a time. ● Simple asynchronous:only one neuron makes a state- change decision. Subset asynchronous:one subset of neurons per field makes state-change decisions at a time
Bivalent BAM theorem. Every matrix is bidirectionally stable for synchronous or asynchronous state changes. • Synchronous:update an entire field of neurons at a time. • Simple asynchronous:only one neuron makes a statechange decision. • Subset asynchronous:one subset of neurons per field makes state-change decisions at a time. Review

Chapter 3.Neural Dynamics II:Activation Models The most popular method for constructing M:the bipolar Hebbian or outer-product learning method binary vector associations:(4,,B i=1,2,…m bipolar vector associations:(XY 4=K,+ X,=2A-1 2002.10.8
2002.10.8 Chapter 3. Neural Dynamics II:Activation Models The most popular method for constructing M:the bipolar Hebbian or outer-product learning method binary vector associations: bipolar vector associations: ( , ) Ai Bi ( , ) Xi Yi i = 1,2, m [ 1] 2 1 Ai = Xi + Xi = 2Ai −1

Chapter 3.Neural Dynamics II:Activation Models The binary outer-product law: M=∑AB The bipolar outer-product law: M=∑XY k The Boolean outer-product law: M=田ABE m,=max a'b1,…,anbh) 2002.10.8
2002.10.8 Chapter 3. Neural Dynamics II:Activation Models The bipolar outer-product law: = m k k T M X k Y The binary outer-product law: = m k k T M Ak B The Boolean outer-product law: k T k m k M = A B max( , , ) 1 1 j m i m i j mij = a b a b

Chapter 3.Neural Dynamics II:Activation Models The weighted outer-product law: m M=∑wXiY Where∑w&=1 holds. In matrix notation: M=XWY Where XT=[X.Xm] Yr=[YI…lYm] W=Diagonal[w1,…,wm] 2002.10.8
2002.10.8 Chapter 3. Neural Dynamics II:Activation Models The weighted outer-product law: In matrix notation: Where holds. = m k k T M wk X k Y = m k wk 1 M X WY T = Where [ | | ] 1 T m T T X = X X [ , , ] W = Diagonal w1 wm [ | | ] 1 T m T T Y = Y Y

Chapter 3.Neural Dynamics II:Activation Models X3.6.1 Optimal Linear Associative Memory Matrices Optimal linear associative memory matrices: M=XY The pseudo-inverse matrix of: XYY-X X'XX=X X'Y-(XX XX=(XX') 2002.10.8
2002.10.8 Chapter 3. Neural Dynamics II:Activation Models Optimal linear associative memory matrices: M X Y * = XX X = X * * * * X XX = X T X X (X X) * * = T XX (XX ) * * = The pseudo-inverse matrix of X : * X ※3.6.1 Optimal Linear Associative Memory Matrices

Chapter 3.Neural Dynamics II:Activation Models X3.6.1 Optimal Linear Associative Memory Matrices Optimal linear associative memory matrices: The pseudo-inverse matrix of: If x is a nonzero scalar:x=1/x If x is a nonzero vector: X If x is a zero scalar or zero vector x*=0 For a rectangular matrix X,if ()exists: X"=X(XX) 2002.10.8
2002.10.8 Chapter 3. Neural Dynamics II:Activation Models ※3.6.1 Optimal Linear Associative Memory Matrices Optimal linear associative memory matrices: The pseudo-inverse matrix of X : * X If x is a nonzero scalar: x 1/ x * = If x is a zero scalar or zero vector : For a rectangular matrix , if exists: 0 * x = If x is a nonzero vector: T T xx x x = * 1 ( ) T − XX * 1 ( ) − = T T X X XX X
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)02. Neuronal Dynamics——Activation Models(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)01.Neuronal Dynamics——Activations and Signals(主讲:高新波).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)选择性集成 Selective Ensemble(南京大学:周志华).ppt
- 《神经网络与模糊系统》课程教学资源(主题演讲)机器学习研究进展(南京大学:王珏).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)进化计算 SOFT COMPUTING Evolutionary Computing.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)模糊系统与模糊逻辑 Fuzzy Theory.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)模糊神经网络 Neuro-fuzzy Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)人工神经网络 Artificial Neural Networks.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)有关人工智能的故事.doc
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程教学资源(学科综述)人工智能 AI.ppt
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第1章 用于机器人的Ubuntu linux.ppt
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第四章 机器人的逆向运动学.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第六章 机器人的动力学.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第五章 速度和静态力.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第二章 空间描述和变换.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第九章 机器人的线性控制.pdf
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第三章 机器人的顺向运动学.pdf
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第3章 机器人编程的Python基础知识.ppt
- 烟台理工学院:《机器人操作系统》课程教学资源(PPT课件讲稿)第2章 机器人编程的C++基础知识.ppt
- 烟台理工学院:《机器人学》课程教学资源(课件讲稿)第一章 机器人概述(主讲:杨智勇).pdf
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(1/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)03. 突触动力学 - 非监督学习 Synaptic Dynamics I——Unsupervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)04. 突触动力学Ⅱ:有监督学习 Synaptic Dynamics II——Supervised Learning(2/2).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)05. 结构和平衡 Architectures and Equilibria.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)06. 模糊与概率 Fuzziness versus Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)07. 模糊联想记忆 Fuzzy Associative Memories(FAM).ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)08. 模糊与神经网络的比较——以倒车系统为例 Comparison of Fuzzy and Neural Truck Backer-Upper Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)09. 模糊图像变换编码 Fuzzy Image Transform Coding.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2003)10. 模糊与卡尔曼滤波目标跟踪控制系统的比较 Comparison of Fuzzy and Kalman-Filter Target-Tracking Control Systems.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 02 ACTIVATIONS AND SIGNALS.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 03 Neuronal Dynamics 2:Activation Models.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 04 SYNAPTIC DYNAMICS 1:UNSUPERVISED LEARNING.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-1 第五章 突触动力学Ⅱ:有监督学习.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 05-2 Synaptic DynamicsII:Supervised Learning.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 06 Architecture and Equilibra 结构和平衡.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-1 Fuzziness vs. Probability.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 07-2 Fuzziness vs. Probability 模糊集合的模糊程度——模糊熵.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-1 Fuzzy Associative Memories.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 10 模糊图像变换编码.ppt
- 西安电子科技大学:《神经网络与模糊系统 Neural Networks and Fuzzy Systems》课程PPT课件讲稿(2004)Chapter 08-2 Fuzzy Associative Memories 模糊联想记忆 FUZZY ASSOCIATIVE MEMMORIESⅡ.ppt