《数学建模》课程教学资源(PPT课件讲稿)第一篇 建立数学模型

(数学模型 第一籯建立数学模烈 11从现实对象到数学模型 12数学建模的重要意义 13数学建模示例 14数学建模的基本方法和步骤 15数学模型的特点和分类 1.6数学建模能力的培养
第一篇 建立数学模型 1.1 从现实对象到数学模型 1.2 数学建模的重要意义 1.3 数学建模示例 1.4 数学建模的基本方法和步骤 1.5 数学模型的特点和分类 1.6 数学建模能力的培养

(数学模型 11从现实对象到数学模型 我们常见的模型 玩具、照片、飞机、火箭模型. 实物模型 水箱中的舰艇、风洞中的飞机. ●●●● 物理模型 地图、电路图、分子结构图 ●●●● ~符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征
玩具、照片、飞机、火箭模型… … ~ 实物模型 水箱中的舰艇、风洞中的飞机… … ~ 物理模型 地图、电路图、分子结构图… … ~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征 1.1 从现实对象到数学模型 我们常见的模型

(数学模型 你碰到过的数学模型“航行问题” 甲乙两地相距750千米,船从甲到乙顺水航行需30小时 从乙到甲逆水航行需50小时,问船的速度是多少? 用x表示船速,y表示水速,列出方程 (x+1)×30=750 x=20 (x-y)×50=750求解y=5 答:船速每小时20千米/小时
你碰到过的数学模型——“航行问题” 用 x 表示船速,y 表示水速,列出方程: ( ) 50 750 ( ) 30 750 − = + = x y x y 答:船速每小时20千米/小时. 甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少? x =20 y =5 求解

(数学模型 航行问题建立数学模型的基本步骤 作出简化假设(船速、水速为常数); 用符号表示有关量(x,表示船速和水速) 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程) 求解得到数学解答(x=20,y=5) 回答原问题(船速每小时20千米/小时)
航行问题建立数学模型的基本步骤 • 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5); • 回答原问题(船速每小时20千米/小时)

(数学模丝 数学模型( Mathematical model)和 数学建模( Mathematical Modeling) 数学模型 对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。 数学 建立数学模型的全过程 建模(包括表述、求解、解释、检验等)
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling) 对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。 建立数学模型的全过程 (包括表述、求解、解释、检验等) 数学模型 数学 建模

(数学模型 12数学建模的重要意义 电子计算机的出现及飞速发展; 数学以空前的广度和深度向一切领域渗透。 数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。 ·在-般工程技术领域数学建模仍然大有用武之地 在高新技术领城数学建模几乎是必不可少的工具 数学进入一些新领域,为数学建模开辟了许多处女地
1.2 数学建模的重要意义 • 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。 数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。 • 在一般工程技术领域数学建模仍然大有用武之地; • 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地

数学模型 数学建模的具体应用 分析与设计 预报与决策 ·控制与优化 规划与管理 数学建模如虎添翼 计算机技术 知识经济
数学建模的具体应用 • 分析与设计 • 预报与决策 • 控制与优化 • 规划与管理 数学建模 计算机技术 知识经济 如虎添翼

数学模型 1.3数学建模示例 13.1椅子能在不平的地面上放稳吗 问题分析通常~三只脚着地放稳~四只脚着地 四条腿一样长,椅脚与地面点接触,四脚 模连线呈正方形 型 假·地面高度连续变化,可视为数学上的连续 设曲面; °地面相对平坦,使椅子在任意位置至少三 只脚同时着地
1.3 数学建模示例 1.3.1 椅子能在不平的地面上放稳吗 问题分析 模 型 假 设 通常 ~ 三只脚着地 放稳 ~ 四只脚着地 • 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地

(数学模丝) 模型构成 用数学语言把椅子位置和四只脚着地的关系表示出来 椅子位置利用正方形(椅脚连线)的对称性 用θ对角线与x轴的夹角)表示椅子位置 B 四只脚着地椅脚与地面距离为零 6、A 距离是的的函数 四个距离 (四只脚)正方形两个距离 D 对称性 AC两脚与地面距离之和~(正方形ABCD BD两脚与地面距离之和~g(的 绕O点旋转
模型构成 用数学语言把椅子位置和四只脚着地的关系表示出来 • 椅子位置 利用正方形(椅脚连线)的对称性 x B A D C O C ´ D´ B ´ 用(对角线与x轴的夹角)表示椅子位置 A ´ • 四只脚着地 距离是的函数 四个距离 (四只脚) A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g() 两个距离 椅脚与地面距离为零 正方形ABCD 绕O点旋转 正方形 对称性

(数学模型 模型构成 用数学语言把椅子位置和四只脚着地的关系表示出来 地面为连续曲面f(),g(是连续函数 椅子在任意位置 对任意f(O,g(0 至少三只脚着地 至少一个为0 数学已知:(,g(是连续函数; 问题 对任意G,f的·g(0)=0; 且g(0)=0,f(0)>0. 证明:存在6,使f的)=8(6)=0
用数学语言把椅子位置和四只脚着地的关系表示出来 f() , g()是连续函数 对任意, f(), g() 至少一个为0 数学 问题 已知: f() , g()是连续函数 ; 对任意, f() • g()=0 ; 且 g(0)=0, f(0) > 0. 证明:存在0,使f(0 ) = g(0 ) = 0. 模型构成 地面为连续曲面 椅子在任意位置 至少三只脚着地
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数学建模》绪论.ppt
- 《数学建模》课程教学资源(参考资料)MATLAB产生的历史背景.doc
- 《数学建模》课程教学资源(教案讲义)第一篇 建立数学模型、第二篇 应用数学软件-MATLAB 入门、第三篇 数学分支中的相关数学模型、第四篇 典型案例分析.doc
- 《运筹学》课程教学讲义(Operations Research)第十一章 排队论.doc
- 《运筹学》课程PPT教学课件(Operations Research)第十章 存贮论.ppt
- 《运筹学》课程教学讲义(Operations Research)第十章 存贮论.doc
- 《运筹学》课程PPT教学课件(Operations Research)第九章 对策论.ppt
- 《运筹学》课程教学讲义(Operations Research)第九章 对策论.doc
- 《运筹学》课程PPT教学课件(Operations Research)第七章 决策论.ppt
- 《运筹学》课程教学讲义(Operations Research)第七章 决策论 7.2 不确定型决策.doc
- 《运筹学》课程教学讲义(Operations Research)第七章 决策论 7.1 决策的概念.doc
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.6)最大流.ppt
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.4)旅行售货员问题.ppt
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.3)中国邮递员问题.ppt
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.2)树.ppt
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.1)图的基本概念.ppt
- 《运筹学》课程PPT教学课件(Operations Research)第六章 图论(6.0)绪言.ppt
- 《运筹学》课程教学讲义(Operations Research)第六章(6.3.2)割平面法(2/2).doc
- 《运筹学》课程教学讲义(Operations Research)第六章(6.3.1)割平面法(1/2).doc
- 《运筹学》课程教学讲义(Operations Research)第六章(6.2)具有整数解的线性规划问题.doc
- 《数学建模》课程教学资源(PPT课件讲稿)第三篇 数学分支中的相关数学模型.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第3讲 MATLAB作图(1/2).ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第3讲 MATLAB作图(2/2).ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第2讲 MATLAB入门.ppt
- 辽宁工程技术大学:《数学建模及其基于MATLAB的实现》讲义_MATLAB入门.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第四篇 典型案例分析 §1 投篮的出手角度 §2 水塔流量估计 §3 钢管订购和运输.ppt
- 《概率与统计》 第一讲 排列组合应用题解法综述.ppt
- 《概率与统计》 概率与统计解答题精选.doc
- 《概率与统计》 第十二章(12-3)参数的点估计.ppt
- 《高等数学》课程教学资源:课程讲义:第一章 微积分的基础问题——集合、实数、极限 §1 极限、实数与集合在微积分中的作用 §2 实数系的建立及邻域概念.ppt
- 《高等数学》课程教学资源:课程讲义:第一章 微积分的基础问题——集合、实数、极限 §3 变量无限变化的数学模型——极限.ppt
- 《高等数学》课程教学资源(知识与题解PPT)1.3.2 函数极限.ppt
- 《高等数学》课程教学资源(知识与题解PPT)1.3.3 无穷小量.ppt
- 《高等数学》课程教学资源(知识与题解PPT)1.3.4 限的四则运算.ppt
- 《高等数学》课程教学资源(知识与题解PPT)1.习题课.ppt
- 《高等数学》课程教学资源(知识与题解PPT)3.1.1 函数的局部变化率——导数.ppt
- 《高等数学》课程教学资源(知识与题解PPT)3.1.2 导数概念.ppt
- 《高等数学》课程教学资源(知识与题解PPT)3.1.4 左导数和右导数.ppt
- 《高等数学》课程教学资源(知识与题解PPT)3.1.5 函数的连续性与可导性之间的关系.ppt
- 《高等数学》课程教学资源(知识与题解PPT)3.1.6 高阶导数的概念.ppt