《Simulations Moléculaires》Cours04V

Monte Carlo Method (1)
Monte Carlo Method (1)

What is a monte carlo simulation? Monte carlo simulation is a numerical method based on the extensive use of random numbers for solving different problems Remark Monte Carlo simulation can be used to study not only stochastic problems(e.g, diffusion) but also non stochastic ones(Monte Carlo integration)
What is a Monte Carlo simulation? Monte Carlo simulation is a numerical method based on the extensive use of random numbers for solving different problems. Remark: Monte Carlo simulation can be used to study not only stochastic problems (e.g., diffusion) but also non stochastic ones (Monte Carlo integration)

A short history Buffon's problem of needle throwing: A needle of length L is thrown at random onto a plane with straight parallel lines which are separated by a distance d(d>l) What is the probability p that the needle will intersect one of these li Ines Georges Louis Leclerc comte de buffon(1707-1788): Eminent French naturalist Solution P=2L/(d Reference: G. Comte de buffon, Essai darithmetique morale, Supplement a I Histoire naturelle. VoL 41777 Remark Laplace suggested that the method described in Buffon's problem can be used as a stochastic method to calculate the value of t
A short history Buffon’s problem of needle throwing: A needle of length L is thrown at random onto a plane with straight parallel lines which are separated by a distance d (d > L). What is the probability P that the needle will intersect one of these lines? Georges Louis Leclerc comte de Buffon (1707 - 1788): Eminent French naturalist. Solution: P = 2L/(pd) Reference: G. Comte de Buffon, Essai d ’arithmétique morale, Supplément à l ’Histoire Naturelle, Vol. 4, 1777. Remark: Laplace suggested that the method described in Buffon’s problem can be used as a stochastic method to calculate the value of p

Condition for intersection h=Lsin(0)/2>X Geometric implication ALSIna P=S/(d/2/2) S1=L2 d/2 L/2 兀/20
q h x d Condition for intersection: h=Lsin(q)/2 > x Geometric implication: P = SI /(d/2 p/2) SI = L/2 x d/2 L/2 p/2 q x=Lsin(q)/2 I

Anecdote In 1901, Lazzerini (ltalian mathematician) performed a simulation by spinning round and dropping a needle 3407 times. He estimated T to be 3. 1415929(accurate to the seventh number after the point!
Anecdote: In 1901, Lazzerini (Italian mathematician) performed a simulation by spinning round and dropping a needle 3407 times. He estimated p to be 3.1415929 (accurate to the seventh number after the point!)

Monte carlo integration XLSin(0)/2 S与m0 d/2 L/2 S can be calculated from Pd/4(Pis the probability of finding a random point in the area under the red curve) π/2 Exercise Write a program to calculate t by using the method of Buffon with d=l and L=3 /4
Exercise Write a program to calculate p by using the method of Buffon with d=1 and L=3/4. Monte Carlo integration x d/2 L/2 p/2 q x=Lsin(q)/2 I = /2 0 sin 2 p dq q L SI SI can be calculated from Pdp/4 (P is the probability of finding a random point in the area under the red curve)

Random number generation General remark All the random numbers generated on a computer are in fact pseudo random numbers which are produced through a deterministic algorithm Basic generator: It produces uniformly distributed random numbers on 0, 11 Desirable properties ofa random number generator It should generate sequences of random numbers which are uniform, uncorrelated with an extremely long period
Random number generation General remark: All the random numbers generated on a computer are in fact pseudorandom numbers which are produced through a deterministic algorithm! Basic generator: It produces uniformly distributed random numbers on [0,1]. Desirable properties of a random number generator: It should generate sequences of random numbers which are •uniform, •uncorrelated, •with an extremely long period

A widely used random-number generation method Congruential method. X=(axn +c)mod(m) Properties of this sequence X<m When a, c, Xo and m are integers, Eq (1)generates integers between 0 and m-1 Xn m gives pseudo-random numbers distributed on(0, 1) lllustration With a=3, c=l, m=16 and a seed Xo=2, we have the following sequences 2.7.6.3.10.15.14.11.2.7 The period of this sequence is 8
A widely used random-number generation method Congruential method: Xn = (aXn-1+c)mod(m) (1) Properties of this sequence: Xn < m When a, c, X0 and m are integers, Eq.(1) generates integers between 0 and m-1. Xn /m gives pseudo-random numbers distributed on (0,1). Illustration: With a=3, c=1, m=16 and a seed X0=2, we have the following sequences, 2, 7, 6, 3, 10, 15, 14, 11, 2, 7,… The period of this sequence is 8

Condition for a congruential generator to have a full period It can be shown that the congruential generator given in Eq (1)has a full period i e. m, if and only if )c and m have no common divisor (i. e, no common divisor other an 2)a=l mod(g) for every prime factor of m 3)a=l mod(4) if m is multiplier of 4 It is obvious that m should be as large as possible! m=231-1 is often used on a computer with 32 bits
Condition for a congruential generator to have a full period: It can be shown that the congruential generator given in Eq.(1) has a full period, i.e. m, if and only if 1) c and m have no common divisor (i.e., no common divisor other than 1); 2) a1 mod(g) for every prime factor of m; 3) a1 mod(4) if m is multiplier of 4. It is obvious that m should be as large as possible! m=231 -1 is often used on a computer with 32 bits

Statistical test of random number generators Uniformity test: Break up the interval between 0 and 1 into a large number of small bins and after generate a large number of random numbers check for uniformity in the numbers of entries in each bins(uniform histogram Parking lot test: Plot points in an m-dimensional space where the m-coordinates of each point are determined by m-successive calls to the random number generator. Then, look for regular structure (resulting from some correlation) Illustration good generator(parking lot test) bad generator(parking lot test) 0
Statistical test of random number generators Uniformity test: Break up the interval between 0 and 1 into a large number of small bins and after generate a large number of random numbers check for uniformity in the numbers of entries in each bins (uniform histogram). Parking lot test: Plot points in an m-dimensional space where the m-coordinates of each point are determined by m-successive calls to the random number generator. Then, look for regular structure (resulting from some correlation). Illustration: good generator (parking lot test) bad generator(parking lot test) 1 1 0 0 1 1 0 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Simulations Moléculaires》Cours04IV.ppt
- 《Simulations Moléculaires》Cours04IIIb.ppt
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》 Cours04I.ppt
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第九章 统计热力学初步 Statistical Thermodynamics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第七章 电化学 Electrochemistry.ppt
- 《Simulations Moléculaires》 Cours04VI.ppt
- 《Simulations Moléculaires》 Cours04VII.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第六章 沉淀滴定法 6.1-6.4 第7章 重量分析法7.1-7.5.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 定量分析中的分离方法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.1-8.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.3-8.6).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 紫外可见吸光光度法及分子荧光分析法 8.7 分子荧光与分子磷光分析法.ppt