《Simulations Moléculaires》Cours04IIIb

Molecular Dynamics (1)
Molecular Dynamics (1)

How to start up? Initial configuration. Criteria for choosing initial configuration: quick relaxation to the equilibrium state Random initial configuration Advantage: liquid-like, easy to generate Drawback: substantial overlaps at high densities Use: Monte-Carlo for systems without hard-core interactions. Not suitable for hard-core interactions and md at high densities Crystal initial configuration e. g, fcc crystal Advantage: avoiding overlaps easy to generate Drawbacks: not liquid-like Use: suitable for all type of MC and MD
How to start up? Initial configuration: Criteria for choosing initial configuration: quick relaxation to the equilibrium state. - Random initial configuration: Advantage: liquid-like, easy to generate. Drawback: substantial overlaps at high densities. Use: Monte-Carlo for systems without hard-core interactions. Not suitable for hard-core interactions and MD at high densities. - Crystal initial configuration: e.g., fcc crystal Advantage: avoiding overlaps, easy to generate. Drawbacks: not liquid-like Use: suitable for all type of MC and MD

Initial velo cities Maxwell-Boltzmann distribution 3)12na 2k Uniform distribution Each velocity components drawn from a uniform distribution in a range (-v max, maX Constraint nv
Initial velocities: Maxwell-Boltzmann distribution: ) 2 exp( 2 ( ) 2 k T k T f m mv v i i i x i x = − Uniform distribution: Each velocity components drawn from a uniform distribution in a range (-vmax, vmax). Constraint: 0 1 = = = N i mivi P

Exercise 1)Write a program for generating an initial configuration with the particles places on a fcc lattice 2)Write a program for generating initial velocities from an uniform distribution in the range(-Vmax, Vmax)(vmax =5) with the constraint that the total initial velocity is zero
Exercise 1) Write a program for generating an initial configuration with the particles places on a fcc lattice. 2) Write a program for generating initial velocities from an uniform distribution in the range (-vmax, vmax) (vmax=5) with the constraint that the total initial velocity is zero

Equilibration Monitoring the equilibration of system with several observables e. g, internal energy, pressure etc A The production run should not start before the system reaches the targeted equilibrium state!
Equilibration Monitoring the equilibration of system with several observables, e.g., internal energy, pressure etc.. A t The production run should not start before the system reaches the targeted equilibrium state!

Molecular Dynamics for Hard Spheres Read initial configuration and initial velocities Identify the next collision Move all particles forward until collision occurs oop Calculate the velocity change of the colliding pair Calculate observables or write out the current configuration End of program
Molecular Dynamics for Hard Spheres Read initial configuration and initial velocities Identify the next collision Move all particles forward until collision occurs Calculate the velocity change of the colliding pair Calculate observables or write out the current configuration End of program loop

Identify the next collision Collision condition: b Livio ⊙ approaching going away Collision time 2+2b;t:;+r;2-2=0 If bi2-vi(ri 2-02)0(condition for collision taking place effectively), the collision time is given
Identify the next collision Collision condition: bij = rij .vij vijt ij 2 + 2bijt ij +rij 2 - s 2 = 0 If bij 2 - vij 2 (rij 2 - s 2 ) 0 (condition for collision taking place effectively), the collision time is given by t ij = {- bij - [bij 2 - vij 2 (rij 2 - s 2 )] 1/2}/vij 2

Collision -Time List and partner list Initializing CTlist-COLTIM(: From the initial condition. Calculate for each particle its collision time with all the other particles the minimum collision time into CoLTIM( (if particle/wIl Find out the minimum of the collision times of particle i and pi not collide with any other particle, put a very large value, e. g TIMBIG, into COLTIM(I Repeat this for all the particles Partner list- PARTNR(N: PaRTNR contains the identity(number of the particle)of the collision partner of particle i
Collision-Time List and Partner list Initializing CT list - COLTIM(N): From the initial condition, Calculate for each particle its collision time with all the other particles. Find out the minimum of the collision times of particle I and put the minimum collision time into COLTIM(I) (if particle I will not collide with any other particle, put a very large value, e.g., TIMBIG, into COLTIM(I)). Repeat this for all the particles. Partner list - PARTNR(N): PARTNR(I) contains the identity (number of the particle) of the collision partner of particle I

Move all particles forward until collision occurs From all the collision times stored in coltim. find out the minimum one (t l]/min Advance the position of all the particles with this time interval, i.e dO=lN RX(=RX(+VX((timin RY(=RY(+VY((timin RZ()=RZ()+Vz(1)°(t1) min enddo
Move all particles forward until collision occurs From all the collision times stored in COLTIM,Find out the minimum one, (tij)min. Advance the position of all the particles with this time interval, i.e., do i=1,N RX(i)=RX(i)+VX(i)*(tij)min RY(i)=RY(i)+VY(i)*(tij)min RZ(i)=RZ(i)+VZ(i)*(tij)min enddo

Calculate the velocity change of the colliding pair Dynamics of elastic collision: vi lafter collision) vi(before collision) Energy conservation requires vi(after collision)=vi (before collision) Since the momentum change takes place along j and no momentum change in the direction perpendicular to ri, the collision is specular with respect to r: This leads to vi(after )=vi (before)+ 8v vi(after)=vi (before)+ &v 8v=[-(bi/orilo 1]collision
Calculate the velocity change of the colliding pair Dynamics of elastic collision: i j rij vij(before collision) vij(after collision) Energy conservation requires: |vij(after collision)| = |vij(before collision)| Since the momentum change takes place along rij and no momentum change in the direction perpendicular to rij, the collision is specular with respect to rij. This leads to vi (after) = vi (before) + dv vi (after) = vi (before) + dv dv = [-(bij/s 2 ) rij]collision
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》 Cours04I.ppt
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第九章 统计热力学初步 Statistical Thermodynamics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第七章 电化学 Electrochemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第六章 相平衡 Phase Equilibrium.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第五章 化学平衡 Chemical Equilibrium.ppt
- 《Simulations Moléculaires》Cours04IV.ppt
- 《Simulations Moléculaires》Cours04V.ppt
- 《Simulations Moléculaires》 Cours04VI.ppt
- 《Simulations Moléculaires》 Cours04VII.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第六章 沉淀滴定法 6.1-6.4 第7章 重量分析法7.1-7.5.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 定量分析中的分离方法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.1-8.2).ppt