《Simulations Moléculaires》 Cours04VI

Monte Carlo Method(2
Monte Carlo Method (2)

Monte Carlo Integration Hit and miss method. ndrg(x) g(x) When-d g(x)c, we can al ways first make a shift f(x=g(x)+d so that f(x) 0 algorithm )generate n uniform random numbers, 5i(i=1, 2, .. N), on(a, b) and n uniform random numbers, Si(i-1, 2,..., N), on(0,c) 2)calculate g(si) and count the number of cases, Nhit, for which g(25) 3)I can be estimated by 5-S3, (b-a Hit/N
Monte Carlo Integration Hit and miss method: = b a I dxg(x) When -d g(x) c, we can always first make a shift f(x)=g(x)+d so that f(x) 0. Algorithm: 1) generate N uniform random numbers, i (i=1,2,…,N), on (a,b) and N uniform random numbers, i (i=1,2,…,N), on (0,c); 2) calculate g(i ) and count the number of cases, Nhit, for which i < g(i ); 3) I can be estimated by Iest=c(b-a)Nhit/N 0 g(x) c

Geometrical illustration glx o mIss N c(b gIX hit a Variance var(L-(b-a]var(p=c(b-a)-I Remark NL has a binomial distribution evar( lest) increases with c(b-a)-I(i.e, the numerical error of the method increases with c(b-a)-1)
Geometrical illustration: c a b x g(x) g(x) miss hit ( ) ( ) ˆ c b a dxg x p b hit a N N − = = Variance: c b a I N I c b a p I est var( )= ( − ) var(ˆ)= ( − )− 2 Remark: •Nhit has a binomial distribution. •var(Iest) increases with c(b-a)-I (i.e., the numerical error of the method increases with c(b-a)-I)

Simple Mean-value Method: 1=dxg(x) -(b-a)dxg(x)ba (b-axg(x) Remark is the mean value of g(x) for a uniform random distribution on(a, b) Algorithm .generate N random numbers, X;, distributed uniformly on(a, b) i can be estimated by using In=2x2∑(x) Variance (b-a) (6 var( var 28(x 2 var(>8(x) var(glx )) (b-a]dxg(xI
Simple Mean-Value Method: Remark: is the mean value of g(x) for a uniform random distribution on (a, b). Algorithm: •generate N random numbers, xi , distributed uniformly on (a, b); •I can be estimated by using, ( ) ( ) 1 ( ) ( ) ( ) b a g x b a I dxg x b a dxg x b a b a = − − = = − = − = N i I est xi g N b a 1 ( ) Variance: ( ) var( ( )) var( ( )) ( ) var( ) var ( ) ( ) 2 1 2 2 1 x N b a x N b a I g x g g N b a N i i N i est i − − = = − = = = = − − b a g I b a dx x N 2 2 ( ) ( ) 1

Efficiency of Monte Carlo Integration Smaller is the variance of the estimated result, higher is the efficiency of the method illustration var est 1/N For fixed n. smaller variance leads to smaller calculation error est large variance smal variance
Efficiency of Monte Carlo Integration Smaller is the variance of the estimated result, higher is the efficiency of the method. Illustration: var(Iest)~1/N For fixed N, smaller variance leads to smaller calculation error. N Iest I N Iest I large variance small variance

Comparison of the efficiency of hit-miss method with that of simple mean-value method 1 Hit-miss method rarest)hit-miss c(b-a)]drg(xHI 2) Simple mean-value method: Ⅴa(gs)=N(ba)gg()r Since c gx), var(I est/hit-miss var est simple The simple mean-value method is more efficient than the hit-miss method Remark Different Monte Carlo integration methods do not have the same efficiency
Comparison of the efficiency of hit-miss method with that of simple mean-value method 1) Hit-miss method = − − I − I b a hit miss c b a dxg x est N 2 ( ) ( ) 1 var( ) 2) Simple mean-value method: = − − I I b a simple b a dxg x g x est N 2 ( ) ( ) ( ) 1 var( ) Since c g(x), var(Iest)hit-miss> var(Iest)simple. The simple mean-value method is more efficient than the hit-miss method. Remark: Different Monte Carlo integration methods do not have the same efficiency

How to improve the efficient of Monte carlo integration method? One widely used method is based on the variance reduction Importance sampling method. Basic ideal 与agx)h8x1x)( f(x)>0 Intuitively, one expects a small variance when g(x)/f(x)is nearly constant Variance var 8(x)d fx g( f When g(x>0 and fxh Ax, var[g(x)/f(x)]=0 In more general cases, when Nx-gtxy, var[g(x)f(x)] reaches a minimum
How to improve the efficient of Monte Carlo integration method? One widely used method is based on the variance reduction. Importance sampling method: Basic ideal: f f x g x f x f x g x I dxg x dx ( ) ( ) ( ) ( ) ( ) = ( )= = f(x) > 0 Intuitively, one expects a small variance when g(x)/f(x) is nearly constant. Variance: I g f x x dx f x g x 2 2 ( ) ( ) ( ) ( ) var = − When g(x)>0 and = ( ) ( ) ( ) dxg x g x f x , var[g(x)/f(x)]=0. In more general cases, when = ( ) ( ) ( ) dxg x g x f x , var[g(x)/f(x)] reaches a minimum

Geometrical implication Simple Mean-Value Method Important Sampling Method f(x) f(x)g(x) g(x) gt g(x)f(x) ooOOO0000Ⅹ
Geometrical implication: Simple Mean-Value Method Important Sampling Method x g(x) 0 x g(x)/f(x) 0 f(x) g(x) f(x) ( ) ( ) f x g x

MR T2 Algorithm(Metropolis Algorithm): Reference N. Metropolis, A W. Rosenbluth, M N. Rosenbluth, A H. Teller and E. Teller, J. Chem. Phys. 21, 1087, (1953) Typical integrals often encountered in statistical mechanics Example: Internal energy =drNE(rp(r p(rN=exp(-E(rN)/kT)/Q Q=dr exp(-E(rN)/kT) Remark p(r)is distribution function with a narrow peak near This is why a simple mean-value method will fail badly for calculating accurately and Q
MR2T 2 Algorithm (Metropolis Algorithm): Reference: N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chem. Phys. 21, 1087, (1953). Typical integrals often encountered in statistical mechanics: Example: Internal energy = dr N E(r N)r(r N) r(r N)=exp(- E(r N)/kT)/Q Q = dr N exp(-E(r N)/kT) Remark: r(r N) is distribution function with a narrow peak near . This is why a simple mean-value method will fail badly for calculating accurately and Q

Basic idea Generate more points in the region where the probability density function, pdf, is large Difficulty Since we do not know completely the distribution function(unknown normalization constant), it is impossible to use the usual techniques e.g, transformation method, rejection method Solution Metropolis et al proposed an iterative method to circumvent the problem
Basic idea: Generate more points in the region where the probability density function, pdf, is large. Difficulty: Since we do not know completely the distribution function (unknown normalization constant), it is impossible to use the usual techniques, e.g., transformation method, rejection method. Solution: Metropolis et al proposed an iterative method to circumvent the problem
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Simulations Moléculaires》Cours04V.ppt
- 《Simulations Moléculaires》Cours04IV.ppt
- 《Simulations Moléculaires》Cours04IIIb.ppt
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》 Cours04I.ppt
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第九章 统计热力学初步 Statistical Thermodynamics.ppt
- 《Simulations Moléculaires》 Cours04VII.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第六章 沉淀滴定法 6.1-6.4 第7章 重量分析法7.1-7.5.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 定量分析中的分离方法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.1-8.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.3-8.6).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 紫外可见吸光光度法及分子荧光分析法 8.7 分子荧光与分子磷光分析法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt