中国高校课件下载中心 》 教学资源 》 大学文库

《Simulations Moléculaires》 Cours04II

文档信息
资源类别:文库
文档格式:PPT
文档页数:19
文件大小:133.5KB
团购合买:点击进入团购
内容简介
Why one needs statistics for describing physical phenomena? Any measurable macroscopic property is an average over a very huge number of microscopic configurations. Time scale of thermal fluctuations and basic relaxations~fs(femto second, 10-15 second). During the time interval necessary for realizing a measurement, a macroscopic system undergoes the change of its microscopic configuration for many many times!
刷新页面文档预览

Necessary Background of Statistical Physics (1

Necessary Background of Statistical Physics (1)

Why one needs statistics for describing physical phenomena? Any measurable macroscopic property is an average over a very huge number of microscopic configurations Time scale of thermal fluctuations and basic relaxations fs(femto second, 10-15 second) During the time interval necessary for realizing a measurement,a macroscopic system undergoes the change of its microscopic configuration for many many times

Why one needs statistics for describing physical phenomena? Any measurable macroscopic property is an average over a very huge number of microscopic configurations. Time scale of thermal fluctuations and basic relaxations ~ fs (femto second, 10-15 second). During the time interval necessary for realizing a measurement, a macroscopic system undergoes the change of its microscopic configuration for many many times!

Ensembles Microcanonical ensemble Fixed parameters: E-energy, V-volume, N-number of particles ystems isolated with impermeable adiabatic walls No exchange with the environment of any kind

Ensembles Microcanonical ensemble: Fixed parameters: E - energy, V - volume, N - number of particles Systems isolated with impermeable adiabatic walls. No exchange with the environment of any kind

Microcanonical ensemble Distribution function 1/22E,V,N) for E H(p, q) +AE f(p, q) 0 otherwise H(P, q): Hamiltonian p=(pl, p2,.,pN) momenta g=(q1, q2,..., N positions Q2(,V,N: statistical weight (partition function of microcanonical ensemble) This is the fundamental postulate of statistical mechanics

Microcanonical ensemble: Distribution function: 1/(E, V, N) for E H(p N , q N) E+E f(p N , q N) = 0 otherwise H(p N , q N): Hamiltonian p N = (p1 , p2 , …, pN) momenta q N = (q1 , q2 , …, qN) positions (E, V, N): statistical weight (partition function of microcanonical ensemble) This is the fundamental postulate of statistical mechanics

Connection with thermodynamics: Boltzmann formula: S(E, V,N= Q2(E,V,N) SE,V,N: entropy k: Boltzmann constant Remark Q2(E,V,N increases in a spontaneous process S(2E,2V,N)=S1(E,V,N)+S2(E,V,N) But c2(2E,2V,N)=g1(E,V,N)×Ω2(E,V,N)

Connection with thermodynamics: Boltzmann formula: S (E, V, N) = k ln (E, V, N) S (E, V, N): entropy k: Boltzmann constant Remark: (E, V, N) increases in a spontaneous process. 1 2 S(2E, 2V,N) = S1 (E, V, N) + S2 (E, V, N) But (2E, 2V,N) = 1 (E, V, N)×2 (E, V, N)

Canonical ensemble Fixed parameters: T-temperature, V-volume, N-number of particles Thermostat at t System enclosed by impermeable diabatic walls Fluctuating parameter: E

Canonical ensemble: Fixed parameters: T - temperature, V - volume, N - number of particles System enclosed by impermeable diabatic walls Fluctuating parameter: E Thermostat at T . . . . .

Canonical ensemble Distribution function f(p, q)=exp( -h(pn, q)/kt)/z ZT,V,N): partition function(normalization factor) N N ZTVM-iJdp dg exp(Hp, q)kD 3N A=(2rB 2/m)/2-thermal wave length o-NSdr exp(F> 2ur r))-configuration integral Connection with thermodynamics: F(T,V,N=-kTIn(T,V,N) F(E, V,N): Helmholtz free energy F=E-TS

Canonical ensemble: Distribution function: f(p N , q N) = exp( - H(p N , q N)/kT)/Z Z(T, V, N): partition function (normalization factor). ( , , ) exp( ( , )/ ) ! 1 3 d d H k T h Z TV N p q p q N N N N N N  = − Connection with thermodynamics: F(T, V, N) = - kT ln Z(T, V, N) F(E, V, N): Helmholtz free energy F = E - TS exp( ( , )) ! 1     = − j i i j i N r r r d u N Q      = N Q 3  = (2p 2 /m)1/2 - thermal wave length - configuration integral

Grand canonical ensemble Fixed parameters: T,V-volume, H-chemical potential Thermostat and particle reservoir(t, u) System enclosed by permeable diabatic walls Fluctuating parameters: E and N

Grand canonical ensemble: Fixed parameters: T, V - volume, m - chemical potential Thermostat and particle reservoir (T, m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System enclosed by permeable diabatic walls Fluctuating parameters: E and N

Grand canonical ensemble Distribution function f(pN,qN,N)=exp(-[H(pq)-N以/kT/三(T,V,μ) 三(T,V,μ): partition function (Ty)∑exp(MN/(TyN) Connection with thermodynamics c2(T,V,μ)=-kTln三(T,V,μ) Q2(T,V,H): Grand potential Q=-PV P: pressure

Grand canonical ensemble: Distribution function: f(p N , q N, N) = exp( - [H(p N , q N) - Nm]/kT)/ (T, V, m) (T, V, m): partition function    = 0 ( , , ) exp( / ) ( , , ) N TV m mN k T Z TV N Connection with thermodynamics: (T, V, m) = - kT ln (T, V, m) (T, V, m): Grand potential  = - PV P: pressure

Isothermal-isobaric ensemble Fixed parameters: T, P-pressure, N Thermostat(t, P piston System enclosed with diabatic walls and connected to the thermostat with a piston Fluctuating parameters: E,V

Isothermal-isobaric ensemble: Fixed parameters: T, P - pressure, N Thermostat (T, P) . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .piston System enclosed with diabatic walls and connected to the thermostat with a piston. Fluctuating parameters: E, V

共19页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档