《Simulations Moléculaires》 Cours04VII

Monte Carlo Method (3)
Monte Carlo Method (3)

Application of mr algorithm in statistical mechanics Canonical ensemble Distribution function p(r=exp(-e(rkT)/Q Q=drN exp(e(rn)/k Different states of the Markov chain In the application of metropolis algorithm to a simulation of molecular system, the states of the Markov chain correspond to different configurations of the molecular system
Application of MR2T2 algorithm in statistical mechanics Canonical ensemble: Distribution function: r(r N)=exp(- E(r N)/kT)/Q Q = dr N exp(-E(r N)/kT) Different states of the Markov chain: In the application of Metropolis algorithm to a simulation of molecular system, the states of the Markov chain correspond to different configurations of the molecular system

How to implement the Mr t algorithm for a molecular simulation? Configuration evolution in two steps. ) attempt move(pii 2)acceptation check (t /T;) Practical recipes for configuration evolution the position of a particle, either It is evolved by displacement of Start with an initial configuration ) chosen randomly or 2)in sequence(from 1 to N)
How to implement the MR2T2 algorithm for a molecular simulation? Configuration evolution in two steps: 1) attempt move (p* ij); 2) acceptation check (pj /pi ). Practical recipes for configuration evolution: Start with an initial configuration. It is evolved by displacement of the position of a particle, either 1) chosen randomly or 2) in sequence (from 1 to N)

Attempt move in practice RXINEW=RX(D+(2.0*RANFI-1)*DRMAX RYINEW=RY+(2.0*RANF2-I)*DRMAX RZINEW=RZ(+(2.0*RANF3-1)*DRMAX Important note The displacement must be centered at the old position,i.e xnew-Xold, ynew-yold, znew -zold are uniformly distributed in(-A, 4) (△= DRMAX) In this case,pi=1(2△)
Attempt move in practice: RXINEW=RX(I) + (2.0*RANF1-1)*DRMAX RYINEW=RY(I) + (2.0*RANF2-1)*DRMAX RZINEW=RZ(I) + (2.0*RANF3-1)*DRMAX Important note: The displacement must be centered at the old position, i.e., xnew-xold, ynew-yold , znew-zold are uniformly distributed in (-D,D) (D=DRMAX). In this case, p* ij=1/(2D)

Acceptation check in practice: 1) calculate△E=E;-E △E=2)分 No need to calculate the energy of the whole system 2)IfAE 0, accept the move 3)IfAE>O, calculate exp (-AE/kT)(exp (AE/kT=I /T and accept the move with a probability equal to exp(-AE/kT) How to do this in practice? Generate a uniform random number on(0, 1),. If s<exp(-AE/kt) accept the move To understand this easily, make an analogy with the dice throwing
Acceptation check in practice: 1) calculate DE=Ej -Ei : No need to calculate the energy of the whole system! 2) If DE 0, accept the move. 3) If DE>0, calculate exp(-DE/kT) (exp(-DE/kT)=pj /pi ) and accept the move with a probability equal to exp(-DE/kT). How to do this in practice? Generate a uniform random number on (0,1), x. If x<exp(-DE/kT), accept the move. To understand this easily, make an analogy with the dice throwing. D = − j i old ij j i new rij r E u( ) u( )

Particular case of hard spheres 1) Attempt move: As in the general case 2)Acceptation check(simplified) If the displaced particle has no overlapping with any other particle, accept the move
Particular case of hard spheres 1) Attempt move: As in the general case. 2) Acceptation check (simplified) If the displaced particle has no overlapping with any other particle, accept the move

Isothermal-isobaric ensemble Distribution function P(r, v)=exp( -[U(r)+ PVkT)/ QTpN QTPN: configuration integral Different states of the Markov chain Now, the states of the markov chain are characterized not only by system's configurations but also by the system size since the volume fluctuates in this ensembl An important remark A straightforward extension of Metropolis algorithm seems to take T, exp(-[Ui+ PVil/kT) WRONG/ The correct Markov chain is generated by using T, exp( -U(S)+ PVi+ Nnvil/kt where s=r/L (L: box length
Isothermal-isobaric ensemble: Distribution function: r(r N, V) = exp( - [U(r N) + PV]/kT)/ QTPN QTPN: configuration integral Different states of the Markov chain: Now, the states of the Markov chain are characterized not only by system’s configurations but also by the system size since the volume fluctuates in this ensemble. An important remark: A straightforward extension of Metropolis algorithm seems to take pi exp( - [Ui + PVi ]/kT). WRONG! The correct Markov chain is generated by using pi exp( - [Ui (s N)+ PVi + NlnVi ]/kT) where s=r/L (L: box length)

Why? In this ensemble. the volume fluctuates and becomes a random variable. To identify correctly the distribution function of all the random variables one must express all of them as explicitly as possible Practical procedure 4dmF)风PHF dry ds AS expl-apvauc
Why? In this ensemble, the volume fluctuates and becomes a random variable. To identify correctly the distribution function of all the random variables, one must express all of them as explicitly as possible. Practical procedure: = − + V N N N NPT r r r Q A dV d A( )exp (PV U( ) 1 0 = − + 0 1 ( )exp ( ( ) 1 V s s s Q N N N N NPT dV d A PV U

Implementation The monte Carlo moves in an isothermal-isobaric ensemble include particle displacement and volume change Practical recipe for MC moves Separate particle displacements and volume change . A volume change every a few displacement cycles Particle displacement old S:=s;+A(251) =sy+A(2321) S:=:+12 The displacement is accepted with a probability equal to min(1,exp(-B△U)
Implementation The Monte Carlo moves in an isothermal-isobaric ensemble include particle displacement and volume change. Practical recipe for MC moves: •Separate particle displacements and volume change; •A volume change every a few displacement cycles. Particle displacement: (2 1) 1 = +D x − s s old x new x (2 1) 2 = +D x − s s old y new y (2 1) 3 = +D x − s s old z new z The displacement is accepted with a probability equal to min(1, exp(-DU))

Volume change L=L+21) Important note. in the case of only a volume change, one must calculate also a0 9 Volume change causes necessarily potential energy change. So, eve The volume change is accepted with a probability equal to minf l, exp (-B[AU+P(Vi-VODV/VA)
Volume change: (2 1) 4 L =L + x − new old Important note: Volume change causes necessarily potential energy change. So, even in the case of only a volume change, one MUST calculate also DU. The volume change is accepted with a probability equal to min{1, exp(-[DU+P(Vj -Vi )])Vj /Vi}
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Simulations Moléculaires》 Cours04VI.ppt
- 《Simulations Moléculaires》Cours04V.ppt
- 《Simulations Moléculaires》Cours04IV.ppt
- 《Simulations Moléculaires》Cours04IIIb.ppt
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》 Cours04I.ppt
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第六章 沉淀滴定法 6.1-6.4 第7章 重量分析法7.1-7.5.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 定量分析中的分离方法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.1-8.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.3-8.6).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 紫外可见吸光光度法及分子荧光分析法 8.7 分子荧光与分子磷光分析法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)5.4 常用的氧化还原滴定法 5.5 氧化还原滴定的计算.ppt