《Simulations Moléculaires》Cours04IV

Molecular Dynamics(2)
Molecular Dynamics (2)

Molecular dynamics for continuous potentials Short history. The first md simulation for a system interacting with a continuous potential (lennard-Jones potential) was carried out by A rahman in1964 A Rahman, Phys. Rev. 136, A405,(1964) Main differences between MD with continuous poential and MD Ofhis MD(continuous potentials) MD CHS continuous change of forces discontinuous changes of forces exerted on all the particles exerted on all the particles approximate solution of motion|exact solution of motion of of equations, equations wide applications restricted applications
Molecular dynamics for continuous potentials Short history: The first MD simulation for a system interacting with a continuous potential (Lennard-Jones potential) was carried out by A. Rahman in 1964. A. Rahman, Phys. Rev. 136, A405, (1964). Main differences between MD with continuous poentials and MD of HS: MD (continuous potentials) •continuous change of forces exerted on all the particles; •approximate solution of motion of equations; •wide applications. MD (HS) •discontinuous changes of forces exerted on all the particles; •exact solution of motion of equations; •restricted applications

Trajectory generation Equation of motion: m, a2r /Ot=ma;=f m;:mass of particle i r: position of particle 1; a; acceleration of particle i f; force on particle i, f =-V,V V: potential energy Numerical solution Method of finite difference
Trajectory generation Equation of motion: mi 2ri /t 2 = miai = fi mi : mass of particle i; ri : position of particle i; ai : acceleration of particle i; fi : force on particle i, fi = -iV V: potential energy Numerical solution: Method of finite difference

Desirable qualities for a good algorithm lt should be fast and requires little memory elt should permit the use of a long time step, 8t It should satisfy the known conservation laws for the energy and momentum and be time-reversible .lt should be simple in form and easy to program
Desirable qualities for a good algorithm •It should be fast and requires little memory. •It should permit the use of a long time step, dt. •It should satisfy the known conservation laws for the energy and momentum and be time-reversible. •It should be simple in form and easy to program

Verlet’ s algorith Position r(t+6t)=2r(t)-r(t6t)+(8t2a(t) The error on position is of order of (St) 4 Taylor expansion (t+6t)=r(t)+δtv(t)+(6t)2a(t)/2+ (t-δt)=r(t)-6tv(t)+(6t)2a(t)2+ velocity vt)=[r(t+δt)-r(t-6t)]/(26t The error on velocity is of order of( St)3
Verlet’s algorithm Position: r(t+dt) = 2r(t) - r(t-dt) + (dt)2a(t) The error on position is of order of (dt)4 . Taylor expansion: r(t+dt) = r(t) + dtv(t) + (dt)2a(t)/2 + … r(t- dt) = r(t) - dtv(t) + (dt)2a(t)/2 + … Velocity: v(t) = [r(t+dt) - r(t-dt)]/(2dt) The error on velocity is of order of (dt)3

How to initialize verlet s algorithm? Problem At t=0, r(-8t) is unknown Solution to the problem r(-∞t)=r(t)-δtv(t
How to initialize Verlet ’s algorithm? Problem: At t=0, r(-dt) is unknown! Solution to the problem: r(-dt) = r(t) - dt . v(t)

Advantages and drawbacks of Verlet's algorithm Advantages Good stability, i. e, relatively large time step Good energy conservation Good time-reversibility Simplicity Drawbacks Not self-starting Position and velocity are not treated with the same precision
Advantages and drawbacks of Verlet’s algorithm Advantages: Good stability, i.e., relatively large time step dt; Good energy conservation; Good time-reversibility; Simplicity. Drawbacks: Not self-starting; Position and velocity are not treated with the same precision

How to choose time step? Simple case ot must be chosen in such a way that the total energy is well conserved and the trajectory is time reversible Complicated case (multi-time scales): When there are several time scales(e.g, mixture of particles with different masses, polymers in solvent, both hard and soft modes exist in molecular systems, etc.), 8t must be chosen according to the dynamics of the component or the mode which evolves most quickly
How to choose time step? Simple case: dt must be chosen in such a way that the total energy is well conserved and the trajectory is time reversible. Complicated case (multi-time scales): When there are several time scales (e.g., mixture of particles with different masses, polymers in solvent, both hard and soft modes exist in molecular systems, etc.), dt must be chosen according to the dynamics of the component or the mode which evolves most quickly

Reduced units Temperature: T"=kT/E Energy E=E/E Pressure P=Po/8 Ime (/mo2)12t F orce f= fo/e
Reduced units Temperature: T* = kT/e Energy: E* = E/e Pressure: P* = Ps 3 /e Time: t* = (e/ms 2 ) 1/2t Force: f * = fs/e

Constant-temperature Molecular Dynamics The basic Md algorithm generates a microcanonical ensemble Different velocity adjusting methods: 1)Andersen's Method. Reference: H.C. Andersen, J. Chem. Phys. 72, 2384, 1980 Basic idea mimicing the collisions between the molecules of the considered system with those of the thermal bath Practical implementation At a preset time interval, At, the velocity of a randomly chosen molecule is reset according to the maxwell-boltzmann distribution with t
Constant-temperature Molecular Dynamics The basic MD algorithm generates a microcanonical ensemble. Different velocity adjusting methods: 1) Andersen’s Method: Reference: H.C. Andersen, J. Chem. Phys. 72, 2384, 1980. Basic idea: mimicing the collisions between the molecules of the considered system with those of the thermal bath. Practical implementation: At a preset time interval, Dt, the velocity of a randomly chosen molecule is reset according to the Maxwell-Boltzmann distribution with T
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Simulations Moléculaires》Cours04IIIb.ppt
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》 Cours04I.ppt
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第九章 统计热力学初步 Statistical Thermodynamics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第七章 电化学 Electrochemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第六章 相平衡 Phase Equilibrium.ppt
- 《Simulations Moléculaires》Cours04V.ppt
- 《Simulations Moléculaires》 Cours04VI.ppt
- 《Simulations Moléculaires》 Cours04VII.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第六章 沉淀滴定法 6.1-6.4 第7章 重量分析法7.1-7.5.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第九章 定量分析中的分离方法.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.1-8.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第八章 紫外可见吸光光度法及分子荧光分析法(8.3-8.6).ppt