《Simulations Moléculaires》 Cours04I

Simulations moleculaires WeI dong aboratoire de chimie UMR 5182 CNRS-Ecole normale Superieure de lyon, 46, Allee d Italie, 69364 Lyon Cedex 07 france Tel:0472728844 Email: Wei Dong @ens-lyon. fr Bureau: LR6 A008
Simulations Moléculaires Wei DONG Laboratoire de Chimie, UMR 5182 CNRS - Ecole Normale Supérieure de Lyon, 46, Allée d’Italie, 69364 Lyon Cedex 07, France Tél : 0472728844 Email : Wei.Dong@ens-lyon.fr Bureau : LR6 A008

Plan Introduction Brief recall of statistical mechanics and thermodynamics Molecular dynamics method (MD) .Monte Carlo method(MC) .lllustration of a few applications of MD and MC in the research works carried out in our laboratory Tutorials on md and mC
Plan •Introduction •Brief recall of statistical mechanics and thermodynamics •Molecular dynamics method (MD) •Monte Carlo method (MC) •Illustration of a few applications of MD and MC in the research works carried out in our laboratory •Tutorials on MD and MC

What can one do with molecular simulations? Study complex systems i.e. those which cannot be described by simple theories o Calculate thermodynamic properties of complex systems(eg liquids internal energy, pressure, chemical potential, Henrys constant etc o Calculate transport properties, e. g. diffusion coefficient viscosity, coefficient of thermal conduction etc Calculate the rate of different types of chemical reactions .Determine different types of distribution functions
What can one do with molecular simulations? •Study complex systems, i.e., those which cannot be described by simple theories. •Calculate thermodynamic properties of complex systems (e.g., liquids): internal energy, pressure, chemical potential, Henry’s constant etc. •Calculate transport properties, e.g., diffusion coefficient, viscosity, coefficient of thermal conduction etc. •Calculate the rate of different types of chemical reactions •Determine different types of distribution functions

Application domains Simple liquids, molecular liquids .liquid mixtures, electrolyte solutions inhomogeneous fluids(interfaces), fluids confined in porous solids polymers, proteins .self-assembling systems(amphiphile, micelle, micro emulsion )etc
Application domains •Simple liquids, molecular liquids; •liquid mixtures, electrolyte solutions; •inhomogeneous fluids (interfaces), fluids confined in porous solids; •polymers, proteins; •self-assembling systems (amphiphile, micelle, micro emulsion) etc

What is the relation between simulation, theory and experiment? Simulation eory Experiment
What is the relation between simulation, theory and experiment? Simulation Theory Experiment

Difference and relation between molecular Simulation and Quantum Chemistry Different scopes (lenght and time scales Quantum chemistry Electronic level. one or a few atoms or molecules Microscopic length and time scales Bond energy, Transition state etc Molecular simulation Atomic and molecular level, large assembly of atoms and molecules Larger length and time scales Effects of inter-molecular interactions, dynamics(non reacting and reacting systems
Difference and relation between Molecular Simulation and Quantum Chemistry Different scopes (lenght and time scales): - Quantum chemistry Electronic level, one or a few atoms or molecules. Microscopic length and time scales. Bond energy, Transition state etc.. - Molecular simulation Atomic and molecular level, large assembly of atoms and molecules. Larger length and time scales. Effects of inter-molecular interactions, dynamics (non reacting and reacting systems)

What is a molecular simulation or the aim ofit? .generating microscopic configurations or trajectories of model systems sampling phase space to determine structural, thermodynamic and transport properties through calculating averages and probabilities pI What are the main methods Molecular dynamics Monte carlo Molecular mechanics
What is a molecular simulation or the aim of it? •generating microscopic configurations or trajectories of model systems. •sampling phase space to determine structural, thermodynamic and transport properties through calculating averages and probabilities. What are the main methods: •Molecular dynamics •Monte Carlo •Molecular mechanics

Basic principles ofMd and MC. molecular dynamics From a given initial condition(positions and momenta), the trajectories of all the molecules are generated by solving the equations of motion(Newton equation for classical dynamics or time-dependent schrodinger equation for quantum dynamics) onte carlo Different configurations are generated by using a stochastic methods
Basic principles of MD and MC: Molecular dynamics From a given initial condition (positions and momenta), the trajectories of all the molecules are generated by solving the equations of motion (Newton equation for classical dynamics or time-dependent Schrödinger equation for quantum dynamics). Monte Carlo Different configurations are generated by using a stochastic methods

A short history Monte Carlo: N. Metropolis, A W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and e. Teller, J. Chem. Phys. 21,, (1953) Molecular dynamics B.J. Alder and T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957);ibid.31,459,(1959) State of the art Molecular simulation spreads more and more widely in various scientific disciplines, e. g, physics, chemistry, biology chemical engineering etc. Systems tractable nowadays: fluids with a million of particles, b1O-polymers etc
A short history: Monte Carlo: N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. Chem. Phys. 21, 1087, (1953). Molecular dynamics: B.J. Alder and T.E. Wainwright, J. Chem. Phys. 27, 1208, (1957); ibid. 31, 459, (1959). State of the art: Molecular simulation spreads more and more widely in various scientific disciplines, e.g., physics, chemistry, biology, chemical engineering etc.. Systems tractable nowadays: fluids with a million of particles, bio-polymers etc

orce felds Atomic systems. U=∑W)∑∑MGF)∑∑∑vFFF片 j>i k>j> where ul, u, and u3 are respectively one-body two-body three-body interaction potentials Pair potential models are widely used in simulations Model interaction potentials Hard-sphere potential u(r
Force fields ( ) ( , ) ( , , ) ... 1 2 3 = + + + u r u r r u r r r k k j i i j i j i j j i i i i i U Atomic systems: where u1 , u2 and u3 are respectively one-body, two-body, three-body interaction potentials. Pair potential models are widely used in simulations. Model interaction potentials Hard-sphere potential: u HS(r) = r s r u(r) s
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《仪器分析》课实验教案 实验一发射光谱定性分析.doc
- 《仪器分析》课程教学大纲解析.doc
- 昆明冶金高等专科学校:《仪器分析》教案解析.doc
- 《仪器分析中的计算机方法》 回归分析的原理及应用解说.doc
- 《化学文献检索讲义》 绪论.doc
- 《化学文献检索讲义》 第三章 专利文献的查阅.doc
- 《化学文献检索讲义》 第二章 化学文摘.doc
- 《化学文献检索讲义》 第六章 计算机检索基础与因特网的使用.doc
- 《化学文献检索讲义》 第四章 计算机检索基础与因特网的使用.doc
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)前言.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十二章 胶体化学 Colloid Chemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十一章 化学动力学 Chemistry Kinetics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第十章 界面现象 Interface Phenomenon.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第九章 统计热力学初步 Statistical Thermodynamics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第七章 电化学 Electrochemistry.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第六章 相平衡 Phase Equilibrium.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第五章 化学平衡 Chemical Equilibrium.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第四章 多组分系统热力学 Thermodynamics of Multicomponent Systems.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第三章 热力学第二定律 The Second Law of Thermodynamics.ppt
- 武汉理工大学理学院应用化学系:《物理化学》教学资源(PPT课件)第二章 热力学第一定律 The First Law of Thermodynamics.ppt
- 《Simulations Moléculaires》 Cours04II.ppt
- 《Simulations Moléculaires》Cours04IIIa.ppt
- 《Simulations Moléculaires》Cours04IIIb.ppt
- 《Simulations Moléculaires》Cours04IV.ppt
- 《Simulations Moléculaires》Cours04V.ppt
- 《Simulations Moléculaires》 Cours04VI.ppt
- 《Simulations Moléculaires》 Cours04VII.ppt
- 《Simulations Moléculaires》 Cours04VIII.ppt
- 《Asymmetric Organocatalysis》英文版不对称有机催化反应讲义.ppt
- 《高分子化学》课程教学资源(PPT讲稿)高分子的基本概念讲义(绪论).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第一章 分析化学概论.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第二章 误差与分析数据处理 2.5 有效数字 第三章 酸碱平衡与酸碱滴定法(3.1-3.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.2-3.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法(3.5-3.8).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第三章 酸碱平衡与酸碱滴定法 3.8 酸碱滴定法的应用 第四章 络合滴定法(4.1-4.2).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.2-4.3).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法(4.3-4.4).ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第四章 络合滴定法 4.5 络合滴定的方式和应用 第五章 氧化还原滴定法 5.1-5.2.ppt
- 北京大学:《分析化学 Analytical Chemistry》课程教学资源(PPT课件讲稿)第五章 氧化还原滴定法(5.3-5.5).ppt