《航空器的稳定与控制》(英文版)Lecture 6 Longitudinal Dynamics

16.333: Lecture #6 Aircraft longitudinal dynamics Typical aircraft open-loop motions · Longitudinal modes · Impact of actuators Linear Algebra in Action!
16.333: Lecture # 6 Aircraft Longitudinal Dynamics • Typical aircraft openloop motions • Longitudinal modes • Impact of actuators • Linear Algebra in Action!

Fa2004 16.3335-1 Longitudinal dynamics Recall: X denotes the force in the X-direction, and similarly for Y and Z, then(as on 4-13) OX Longitudinal equations(see 4-13 )can be rewritten as mu= Xuu+ Xww-mg cos 000+AX mla-qU0= Zuu+ Zww+ Zi+ Zaq-mg sin 000+AZ M2+Mn+ M,iwn+M0q+△Me · There is no roll/yaw motion,soq=θ Control commands△X,△ze,and△ M have not yet been specified
� � Fall 2004 16.333 5–1 Longitudinal Dynamics • Recall: X denotes the force in the Xdirection, and similarly for Y and Z, then (as on 4–13) ∂X Xu ≡ , . . . ∂u 0 • Longitudinal equations (see 4–13) can be rewritten as: mu˙ = Xuu + Xww − mg cos Θ0θ + ΔXc m(w˙ − qU0) = Zuu + Zww + Zw˙w˙ + Zqq − mg sin Θ0θ + ΔZc Iyyq˙ = Muu + Mww + Mw˙w˙ + Mqq + ΔMc There is no roll/yaw motion, so q = θ ˙ • . • Control commands ΔXc , ΔZc , and ΔMc have not yet been specified

Fa2004 16.3335-2 Rewrite in state space form as mg cos eo △XC (m-z) ∠n∠zq+mU0- ng sin6o △ZC Maiw+lug Mu Mw Mq △MC 0m-2t00 0 0 mg cos o △XC Lg mo -mg sin e △Zc M M 0 △Mc 0 Ex= Ar+c descriptor state space form →=E-(Ax+c)=A+c
Fall 2004 16.333 5–2 • Rewrite in state space form as ⎡ ⎡⎤ ⎤⎡ ⎡⎤ ⎤ mu˙ Xu Xw 0 −mg cos Θ0 u ΔXc ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ ΔZc (m − Zw˙)w˙ Zu Zw Zq + mU0 −mg sin Θ0 Mu Mw Mq 0 w q = + −M ΔMc w˙w˙ + Iyyq˙ θ ˙ 0 0 1 0 θ 0 ⎡ ⎡⎤ ⎤ m 0 0 0 u˙ ⎢ ⎢ ⎢ ⎣ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎦ w˙ q˙ 0 m − Zw˙ 0 0 0 −Mw˙ Iyy 0 θ ˙ 0 0 0 1 ⎡ ⎤ ⎡⎤⎡ ⎤ Xu Xw 0 −mg cos Θ0 u ΔXc ⎢ ⎢ ⎢ ⎣ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎦ ΔZc Zu Zw Zq + mU0 −mg sin Θ0 Mu Mw Mq 0 w q = + ΔMc 0 0 1 0 θ 0 EX˙ = A¯X + ˆc descriptor state space form = E−1 ¯ ⇒ X (AX + ˆc) = AX + c ˙ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣

Fa2004 16.3335-3 Write out in state space form 0 - g cos eo z Zg mlo m-2 -mg sin eo Iy[Mu+Zur Iw [M+ Zur[Ma+(Zg+mUo)r-IwyImg sin Oor Note: slight savings if we defined symbols to embed the mass/inertia X /m, Zu=Zu/m, and M / Iy then a matrix cola X COS Lq 9720 +么[+2[+2+ 1-Z, Check the notation that is being used very carefully To figure out the c vector, we have to say a little more about how the control inputs are applied to the system
� � � � � � Fall 2004 16.333 5–3 • Write out in state space form: ⎡ Xu Xw 0 −g cos Θ0 m m Zu Zw Zq + mU0 −mg sin Θ0 m − Zw˙ m − Zw˙ m − Zw˙ m − Zw˙ I−1 [Mu + ZuΓ] I−1 [Mw + ZwΓ] I−1 [Mq + (Zq + mU0)Γ] −Iyy mg sin Θ0Γ −1 yy yy yy 0 0 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ A = Mw˙ Γ = m − Zw˙ • Note: slight savings if we defined symbols to embed the mass/inertia Xˆ ˆ u = Xu/m, Zˆu = Zu/m, and Mq = Mq/Iyy then A matrix collapses to: ⎡ ⎤ ˆ ˆ Xu Xw 0 −g cos Θ0 Aˆ = ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ Zˆu Zˆw Z −g sin Θ0 ˆq + U0 1 − Zˆw˙ 1 − Zˆw˙ 1 − Zˆw˙ 1 − Zˆw˙ Mˆ ˆ ˆ ˆ ˆ u + ZˆuΓ Mw + ZˆwΓ Mq + (Zˆq + U0) ˆ Γˆ −g sin Θ0Γ 0 0 1 0 ˆ ˆ Mw˙ Γ = 1 − Zˆw˙ • Check the notation that is being used very carefully • To figure out the c vector, we have to say a little more about how the control inputs are applied to the system

Fa2004 16.3335-4 Longitudinal Actuators Primary actuators in longitudinal direction are the elevators and thrust Clearly the thrusters/elevators play a key role in defining the steady-state/equilibrium flight condition Now interested in determining how they also influence the aircraft motion about this equilibrium condition deflect elevator u(t),w(t), q(t) Canard Rudde Recall that we defined AX as the perturbation in the total force in the x direction as a result of the actuator commands Force change due to an actuator deflection from trim Expand these aerodynamic terms using same perturbation approach △X=X66+X61b de is the deflection of the elevator from trim down positive on change in thrust Xs and Xs, are the control stability derivatives
Fall 2004 16.333 5–4 Longitudinal Actuators • Primary actuators in longitudinal direction are the elevators and thrust. – Clearly the thrusters/elevators play a key role in defining the steadystate/equilibrium flight condition – Now interested in determining how they also influence the aircraft motion about this equilibrium condition deflect elevator → u(t), w(t), q(t), . . . • Recall that we defined ΔXc as the perturbation in the total force in the X direction as a result of the actuator commands – Force change due to an actuator deflection from trim • Expand these aerodynamic terms using same perturbation approach ΔXc = Xδeδe + Xδpδp – δe is the deflection of the elevator from trim (down positive) – δp change in thrust – Xδe and Xδp are the control stability derivatives

Fa2004 16.3335-5 Now we have that △X X6。X △Zc E 26Z6 E △MC Bu Ms M e For the longitudinal case B Iy IMe +Z J Iw [Mo, +Zo T Typical values for the B747 16.54 6n=0.3719=849528 5.2·10 M6n≈0 Aircraft response y=G(sa A=A+ Bu -G(s)=c(sl-a)B y=c We now have the means to modify the dynamics of the system, but first let's figure out what de and dp rea d
� � � � Fall 2004 16.333 5–5 • Now we have that ⎡⎤⎡ ⎤ ΔXc ⎥ ⎥ ⎥ ⎦ = E−1 ⎢ ⎢ ⎢ ⎣ Xδe Xδp Zδe Zδp Mδe Mδp ⎥ ⎥ ⎥ ⎦ c = E−1 ⎢ ⎢ ⎢ ⎣ ΔZc ΔMc δe = Bu δp 0 0 0 • For the longitudinal case ⎡ ⎤ Xδe Xδp m m Zδe Zδp B = m − Zw˙ m − Zw˙ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ I−1 I−1 [Mδe + ZδeΓ] yy yy Mδp + ZδpΓ 0 0 • Typical values for the B747 Xδe = −16.54 Xδp = 0.3mg = 849528 Zδe = −1.58 · 106 Zδp ≈ 0 Mδe = −5.2 · 107 Mδp ≈ 0 • Aircraft response y = G(s)u X˙ = AX + Bu → G(s) = C(sI − A) −1B y = CX • We now have the means to modify the dynamics of the system, but first let’s figure out what δe and δp really do

Fa2004 16.3335-6 Longitudinal Response Final response to a step input u=i s,y=G(su, use the FVt lim y(t)= lims(G(s) S-0 lim y(t)= G(Ou=-(CA B)i ● Initial response to a step input, use theⅣVT )=lim s(G( lim G(s)i For your system, G(s)=C(sI-A-B+D, but D=0,so n S→0 Note: there is No immediate change in the output of the motion variables in response to an elevator input= y(0+)=0 Consider the rate of change of these variables y(o*) i(t)=C=CAR+CBu and normally have that CB#0. Repeat process above to show that (0*)=CBi, and since C=I, v(0+)=Bu Looks good. Now compare with numerical values computed in Mat lab. Plot u, a, and flight path angle y=6-a (since 00=10=0 see picture on 4-8) I Note that C(sI-A)-IB+D=D+CB+CazE+
� � � � Fall 2004 16.333 5–6 Longitudinal Response • Final response to a step input u = u/s ˆ , y = G(s)u, use the FVT uˆ lim y(t) = lim s G(s) t→∞ s→0 s ⇒ lim y(t) = G(0)ˆ u t→∞ u = −(CA−1 B)ˆ • Initial response to a step input, use the IVT uˆ y(0+) = lim s G(s) = lim G(s)uˆ s→∞ s s→∞ – For your system, G(s) = C(sI − A) −1B + D, but D ≡ 0, so lim G(s) → 0 s→∞ – Note: there is NO immediate change in the output of the motion variables in response to an elevator input ⇒ y(0+) = 0 • Consider the rate of change of these variables y˙(0+) y˙(t) = CX˙ = CAX + CBu and normally have that CB =� 0. Repeat process above1 to show that y˙(0+) = CBuˆ, and since C ≡ I, y˙(0+) = Buˆ • Looks good. Now compare with numerical values computed in Matlab. Plot u, α, and flight path angle γ = θ − α (since Θ0 = γ0 = 0 – see picture on 4–8) 1 CB Note that C(sI − A)−1B + D = D + + CA−1B + . . . s s2

Fa2004 16.3335-7 Elevator(1 elevator down-stick forward) See very rapid response that decays quickly(mostly in the first 10 seconds of the a response) Also see a very lightly damped long period response(mostly u, some T, and very little a). Settles in>600 secs Predicted steady state values from code 14. 1429 m/s u(speeds up 0.0185 rad a (slight reduction in AOA) -0.0000rad/sq -0.0161rad6 0.0024rady Predictions appear to agree well with the numerical results Primary result is a slightly lower angle of attack and a higher speed Predicted initial rates of the output values from code 00001m/s32ti -0.0233rad/sa 1.1569 rad s q 0.0000ad/s6 0.0233 rad /s i All outputs are zero at t=of, but see rapid changes in a and q Changes in u and y(also a function of 0)are much more gradual not as easy to see this aspect of the prediction Initial impact Change in a and q(pitches aircraft Long term impact Change in u(determines speed at new equilib rium condition)
Fall 2004 16.333 5–7 Elevator (1◦ elevator down – stick forward) • See very rapid response that decays quickly (mostly in the first 10 seconds of the α response) • Also see a very lightly damped long period response (mostly u, some γ, and very little α). Settles in >600 secs • Predicted steady state values from code: 14.1429 m/s u (speeds up) 0.0185 rad α (slight reduction in AOA) 0.0000 rad/s q 0.0161 rad θ 0.0024 rad γ – Predictions appear to agree well with the numerical results. – Primary result is a slightly lower angle of attack and a higher speed • Predicted initial rates of the output values from code: 0.0001 m/s2 u˙ 0.0233 rad/s α˙ 1.1569 rad/s2 q˙ 0.0000 rad/s θ ˙ 0.0233 rad/s γ˙ – All outputs are zero at t = 0+, but see rapid changes in α and q. – Changes in u and γ (also a function of θ) are much more gradual – not as easy to see this aspect of the prediction • Initial impact Change in α and q (pitches aircraft) • Long term impact Change in u (determines speed at new equilibrium condition)

Fa2004 16.3335-8 8 a 88 人 人 导 R pen)n 18 Figure 1: Step Response to 1 deg elevator perturbation -B747 at M=0.8
Fall 2004 16.333 5–8 0 200 400 600 5 0 30 25 20 15 10 u time 0 200 400 600 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 (rad) α time Step response to 1 deg elevator perturbation 0 200 400 600 −0.1 −0.05 0 0.05 0.1 γ time 0 10 20 30 40 5 0 30 25 20 15 10 u time 0 10 20 30 40 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 (rad) α time 0 10 20 30 40 −0.1 −0.02 −0.04 −0.06 −0.08 0 0.02 γ time Figure 1: Step Response to 1 deg elevator perturbation – B747 at M=0.8

Fa2004 16.33359 Thrust(1/6 input) Motion now dominated by the lightly damped long period response Short period motion barely noticeable at beginning o Predicted steady state values from code 0 m/s u 0 rad 0 rad /s q 0.05rad6 0.05 rad Predictions appear to agree well with the simulations Primary result- now climbing with a flight path angle of 0.05 rad at the same speed we were going before. Predicted initial rates of the output values from code 29430m/ 0 rad /s 000 rad/s2 q d/s 8 rad /s Changes to a are very small, and y response initially flat Increase power, and the aircraft initially speeds up Initial impact Change in u(accelerates aircraft Long term impact Change in y( determines climb rate
Fall 2004 16.333 5–9 Thrust (1/6 input) • Motion now dominated by the lightly damped long period response • Short period motion barely noticeable at beginning. • Predicted steady state values from code: 0 m/s u 0 rad α 0 rad/s q 0.05 rad θ 0.05 rad γ – Predictions appear to agree well with the simulations. – Primary result – now climbing with a flight path angle of 0.05 rad at the same speed we were going before. • Predicted initial rates of the output values from code: 2.9430 m/s2 u˙ 0 rad/s α˙ 0 rad/s2 q˙ 0 rad/s θ ˙ 0 rad/s γ˙ – Changes to α are very small, and γ response initially flat. – Increase power, and the aircraft initially speeds up • Initial impact Change in u (accelerates aircraft) • Long term impact Change in γ (determines climb rate)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《航空器的稳定与控制》(英文版)Lecture 4 Aircraft Dynamics.pdf
- 《航空器的稳定与控制》(英文版)Lecture 3 Euler Angles.pdf
- 《航空器的稳定与控制》(英文版)Lecture 2 Static Stabilit.pdf
- 《航空器的稳定与控制》(英文版)Lecture 1 Aircraft Performance.pdf
- 麻省理工学院:《数值模拟导论》第二十一讲 边界值问题三维有限微分问题的求解.pdf
- 麻省理工学院:《数值模拟导论》第二十二讲 积分方程法.pdf
- 麻省理工学院:《数值模拟导论》第二十三讲 积分方程的快速算法.pdf
- 麻省理工学院:《数值模拟导论》第二十讲 边界值问题的有限差分法.pdf
- 麻省理工学院:《数值模拟导论》第十九讲 拉普拉斯方程一有限元法.pdf
- 麻省理工学院:《数值模拟导论》第十六讲 计算周期性稳定态的方法2.pdf
- 麻省理工学院:《数值模拟导论》第十七、十八讲 分子动态学.pdf
- 麻省理工学院:《数值模拟导论》第十四讲 多步法Ⅱ.pdf
- 麻省理工学院:《数值模拟导论》第十一讲 牛顿法实例学习——模拟图像滤波器.pdf
- 麻省理工学院:《数值模拟导论》第十五讲 计算周期性稳定态的方法.pdf
- 麻省理工学院:《数值模拟导论》第十三讲 多步法收敛性.pdf
- 麻省理工学院:《数值模拟导论》第十二讲 一般不等式求解法.pdf
- 麻省理工学院:《数值模拟导论》第十讲 改进的牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第九讲 多维牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第八讲 一维非线性求解方法.pdf
- 麻省理工学院:《数值模拟导论》第六讲 Krylov子空间矩阵求解方法.pdf
- 《航空器的稳定与控制》(英文版)Matrix Diagonalization.pdf
- 《航空器的稳定与控制》(英文版)Lecture 10 State Space Control.pdf
- 《航空器的稳定与控制》(英文版)Lecture 7 More Stability Derivatives.pdf
- 《航空器的稳定与控制》(英文版)Lecture 9 Basic Longitudinal Control.pdf
- 《航空器的稳定与控制》(英文版)Lecture 8 Aircraft Lateral dynamics.pdf
- 《航空器的稳定与控制》(英文版)Examples of Estimation Filters from Recent Aircraft Projects at MIT.pdf
- 《航空器的稳定与控制》(英文版)Lecture 13 Altitude Controller.pdf
- 《航空器的稳定与控制》(英文版)Lecture 15 INERTIAL SENSoRS.pdf
- 《航空器的稳定与控制》(英文版)Lecture 14 Equations of Motion.pdf
- 《航空器的稳定与控制》(英文版)Lecture 12 Lateral Autopilots.pdf
- 《航空器的稳定与控制》(英文版)Lecture 17 VALIDATION- DETAILS.pdf
- 《航空器的稳定与控制》(英文版)Distributed Coordination and Control.pdf
- 《航空器的稳定与控制》(英文版)Lecture 16 System Identification.pdf
- 《随机预算与调节》(英文版)Lecture 1 Pre-requisites.pdf
- 《随机预算与调节》(英文版)Lecture 3 Last time: Use of Bayes' rule to find the probability.pdf
- 《随机预算与调节》(英文版)Lecture 5 Last time Characterizing groups of random variables.pdf
- 《随机预算与调节》(英文版)Lecture 2 Last time: Given a set of events with are mutually.pdf
- 《随机预算与调节》(英文版)Lecture 4 Last time: Left off with characteristic.pdf
- 《随机预算与调节》(英文版)Lecture 7 Last time: Moments of the Poisson distribution from its generating function.pdf
- 《随机预算与调节》(英文版)Lecture 8 ast time: Multi-dimensional normal distribution.pdf