武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.3)共轭斜量法

2.3共轭斜量法 Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差,CG算法只用有限步就收敛于方程组的精确解
2.3 共轭斜量法 (Conjugate Gradient Methods) 属于一种迭代法,但如果不考虑计算过程的舍入误 差,CG算法只用有限步就收敛于方程组的精确解

Outline >Background > Steepest Descent > Conjugate Gradient
Outline ØBackground ØSteepest Descent ØConjugate Gradient

1 Background The min(max) problem min f(X X But we learned in calculus how to solve that kind of question
1 Background • The min(max) problem: • But we learned in calculus how to solve that kind of question! min f (x) x

real world” problem Connectivity shapes (isenburg,gumhold, gotsman) mesh=c=(v, e), geometry, What do we get only from C without geometry
“real world” problem • Connectivity shapes (isenburg,gumhold,gotsman) • What do we get only from C without geometry? mesh {C (V, E), geometry}

Motivation-"real world problem first we introduce error functionals and then try to minimize them E(x∈R3)=2(x-x)|-) (i,j)∈E E,(x∈R3)=∑L(x)2 (x)=∑x i(i,j)∈E
Motivation- “real world” problem • First we introduce error functionals and then try to minimize them: 2 3 ( , ) ( ) 1 n s i j i j E E x x x ( , ) 1 ( ) i j i i i j E L x x x d 3 2 1 ( ) ( ) n n r i i E x L x

Motivation-"real world problem Then we minimize E(C, h)=argmin(1-h)E, (x)+E, (x) x∈R >High dimension non-linear problem Conjugate gradient method is maybe the most popular optimization technique based on what we'll see here
Motivation- “real world” problem ØThen we minimize: ØHigh dimension non-linear problem. ØConjugate gradient method is maybe the most popular optimization technique based on what we’ll see here. 3 ( , ) arg min 1 ( ) ( ) n s r x E C E x E x

Directional derivatives first. the one dimension derivative .1 -0.05 d -.1 40.15 dx
Directional Derivatives: first, the one dimension derivative:

Directional derivatives Along the axes of(, y) y of(x, y) oX
x f x y ( , ) y f x y ( , ) Directional Derivatives : Along the Axes…

Directional derivatives In general direction v∈R21 of(x, y OV
v f x y ( , ) 2 v R v 1 Directional Derivatives : In general direction…

Directional Derivatives 42024 of(, y) of(x, y) ay ax
Directional Derivatives x f x y ( , ) y f x y ( , )
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 武汉大学数学与统计学院:《数值分析》第一章(1.1)数值分析简介.ppt
- 武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.2)线性方程组的迭代法.ppt
- 武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.1)线性方程组的直接法.ppt
- 武汉大学数学与统计学院:《数值分析》第一章(1.4)向量范数与矩阵范数.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.3)对偶问题与灵敏度分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.5)线性整数规划.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.4)运输问题.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.2)单纯形法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.1)线性规划的模型与图解法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析(5.2)网络分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析(5.1)图的基本概念.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(9.1)动态规划的基本概念与方法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(9.2)动态规划应用举例.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(主讲:杜纲、吴育华).ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.5)MG1排队模型.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.4)MMC排队模型.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.1)排队的基本概念.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析.ppt
- 武汉大学数学与统计学院:《数值分析》第三章 非线性方程的数值解法(3.1)对分法和一般迭代法.ppt
- 武汉大学数学与统计学院:《数值分析》第三章 非线性方程的数值解法(3.2)牛顿法.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.1)Lagrange插值.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.4)牛顿插值和Hermite插值.ppt
- 武汉大学数学与统计学院:《数值分析》第五章 函数逼近(5.1)最佳一致逼近.ppt
- 武汉大学数学与统计学院:《数值分析》第五章 函数逼近(5.2)最佳平方逼近.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.3)样条函数插值.ppt
- 武汉大学数学与统计学院:《数值分析》第六章 曲线拟合.ppt
- 武汉大学数学与统计学院:《数值分析》第七章 数值积分(7.2)Romberge积分和Gauss积分.ppt
- 武汉大学数学与统计学院:《数值分析》第七章 数值积分(7.1)Newton-Cotes公式.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.1)单步法.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.2)单步法的收敛性和稳定性.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.3)stiff systems.ppt
- 武汉大学数学与统计学院:《数值分析》第9章 矩阵特征值问题的数值方法(9.5)乘幂法和QR算法.ppt
- 武汉大学数学与统计学院:《数值分析》第9章 矩阵特征值问题的数值方法(9.1-9.4)特征值和Jacobi方法.ppt
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)计算机模拟法相关知识——怎样产生随机数.doc
- 石家庄经济学院:《数学软件与实验》授课计划.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第八章 海港系统卸载货物的计算机模拟(8.4)海港系统卸载货物的模拟.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第八章 海港系统卸载货物的计算机模拟(8.1-8.3)问题提出.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第二章 飞机定价(方程求解).doc