武汉大学数学与统计学院:《数值分析》第三章 非线性方程的数值解法(3.1)对分法和一般迭代法

数值分析 第三章非线性方程的数值解法 数学与统计学院 BeebaeseseSeses'BeSasBeSesBsse
数值分析 第三章 非线性方程的数值解法 数学与统计学院

简介( Introduction) 我们知道在实际应用中有许多非线性方程的 例子,例如 (1)在光的衍射理论( the theory of diffraction of light)中,我们需要求 X-tanx=0的根 (2)在行星轨道( planetary orbits)的计算 中,对任意的a和b,我们需要求 X-asinX=b的根 (3)在数学中,需要求n次多项式xn+a1xn 1+..+an1x+an1=0的根 求f(x)=0的根
简介(Introduction) • 我们知道在实际应用中有许多非线性方程的 例子,例如 • (1)在光的衍射理论(the theory of diffraction of light)中,我们需要求x-tanx=0的根 • (2)在行星轨道(planetary orbits)的计算 中,对任意的a和b,我们需要求x-asinx=b的根 • (3) 在数学中,需要求n次多项式x n + a1 x n- 1+...+an-1 x + an =0的根 求f(x)=0的根

s31对分区间法 (Bisection Method 原理:著fx)∈C{a,b,且∫(a)·f(b)< 0,则f(x在(a,b)上必有一根
§3.1 对分区间法 (Bisection Method ) 原理:若 f(x) C[a, b],且 f (a) · f (b) < 0,则f(x) 在 (a, b) 上必有一根

停机条件( termination condition) E1或f(x)<
a b x1 x2 a1 b x* b1 a2 停机条件(termination condition ): 1 1 x x ε k+ − k 2 或 f (x) ε

差)分析: a+b 第1步产生的x、=2 有误差p1-xs 第k步产生的xk有误差4-x≤2 对于给定的精度,可估计二分法所需的步数 In(b-a)-In el 2 In 2
误差 分析: 第1步产生的 2 1 a b x + = 有误差 2 1 b a |x x*| − − 第 k 步产生的 xk 有误差 k k b a |x x*| 2 − − 对于给定的精度 ,可估计二分法所需的步数 k : ( ) ln 2 ln ln 2 b a ε ε k b a k − − −

例1用二分法求x2+4x2-10=0 在(1,2)内的根,要求绝对误差不超过1×10-2 解 f(1)=50-(1,2)+ 15 f(15)>01,1.5) 2 1.25 f(125)0(1.25,1375) x4≈1313 f(1313)0(1.360,1.368) 8=1364
例1 用二分法求 在(1,2)内的根,要求绝对误差不超过 解: f(1)=-50 -(1,2)+ f(1.25)0 (1.25,1.375) f(1.313)0 (1.360,1.368) 4 10 0 3 2 x + x − = 2 10 2 1 − f(1.5)>0 (1,1.5) xn x1 = 1.5 1.364 1.368 1.360 1.344 1.313 1.375 1.25 8 7 6 5 4 3 2 = = = = x x x x x x x

例2,求方程x)=x3-ex=的一个实根。 因为f(0)0。故fx)在(0,1)内有根 用二分法解之,(ab)=(0,1)3计算结果如表: f(x)符号 0.5000 k0123456789 0.5000 0.7500 0.7500 0.8750 0.8750 0.8125 0.8125 0.7812 0.7812 0.7656 十++一 0.7656 0.7734 0.7734 0.7695 0.7695 0.7714 0.7714 0.7724 100.7724 0.7729 取x10=0.7729,误差为x*-X10=1/21
12 例2,求方程f(x)= x 3 –e -x =0的一个实根。 因为 f(0)0。 故f(x)在(0,1)内有根 用二分法解之,(a,b)=(0,1)’计算结果如表: k a bk xk f(xk )符号 0 0 1 0.5000 - 1 0.5000 - 0.7500 - 2 0.7500 - 0.8750 + 3 - 0.8750 0.8125 + 4 - 0.8125 0.7812 + 5 - 0.7812 0.7656 - 6 0.7656 - 0.7734 + 7 - 0.7734 0.7695 - 8 0.7695 - 0.7714 - 9 0.7714 - 0.7724 - 10 0.7724 - 0.7729 + 取x10 =0.7729,误差为| x* -x10|<=1/2 11

Remark1:求奇数个根 Find solutions to the equation 0=3-6x+10 x-4 on the intervals o, 4], use the bisection method to compute a solution with an accuracy of 107. Determine the number of iterations to use
Remark1:求奇数个根 Find solutions to the equation on the intervals [0, 4],Use the bisection method to compute a solution with an accuracy of 10-7 . Determine the number of iterations to use

+1一4 卫ot[I[x]x{xrD,4}1 0,1],[1.5,25]and[3,4] 利用前面的公式可计算 迭代次数为k=23
[0,1], [1.5, 2.5] and [3,4], 利用前面的公式可计算 迭代次数为k=23

Remark2:要区别根与奇异点 Consider f(x)= tan(x)on the interval (0, 3). Use the 20 iterations of the bisection me thod and see what happens. Explain the results that you obtained (如下图)
Remark2:要区别根与奇异点 Consider f(x) = tan(x) on the interval (0,3).Use the 20 iterations of the bisection method and see what happens. Explain the results that you obtained. (如下图)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.3)共轭斜量法.ppt
- 武汉大学数学与统计学院:《数值分析》第一章(1.1)数值分析简介.ppt
- 武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.2)线性方程组的迭代法.ppt
- 武汉大学数学与统计学院:《数值分析》第二章 求解线性方程组的数值解法(2.1)线性方程组的直接法.ppt
- 武汉大学数学与统计学院:《数值分析》第一章(1.4)向量范数与矩阵范数.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.3)对偶问题与灵敏度分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.5)线性整数规划.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.4)运输问题.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.2)单纯形法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第二章 线性规划(2.1)线性规划的模型与图解法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析(5.2)网络分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第五章 图与网络分析(5.1)图的基本概念.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(9.1)动态规划的基本概念与方法.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(9.2)动态规划应用举例.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第九章 动态规划(主讲:杜纲、吴育华).ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.5)MG1排队模型.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.4)MMC排队模型.ppt
- 天津大学管理学院:《管理科学基础》课程PPT教学课件(运筹学)第十三章 排队系统分析(13.1)排队的基本概念.ppt
- 武汉大学数学与统计学院:《数值分析》第三章 非线性方程的数值解法(3.2)牛顿法.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.1)Lagrange插值.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.4)牛顿插值和Hermite插值.ppt
- 武汉大学数学与统计学院:《数值分析》第五章 函数逼近(5.1)最佳一致逼近.ppt
- 武汉大学数学与统计学院:《数值分析》第五章 函数逼近(5.2)最佳平方逼近.ppt
- 武汉大学数学与统计学院:《数值分析》第四章 插值法(4.3)样条函数插值.ppt
- 武汉大学数学与统计学院:《数值分析》第六章 曲线拟合.ppt
- 武汉大学数学与统计学院:《数值分析》第七章 数值积分(7.2)Romberge积分和Gauss积分.ppt
- 武汉大学数学与统计学院:《数值分析》第七章 数值积分(7.1)Newton-Cotes公式.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.1)单步法.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.2)单步法的收敛性和稳定性.ppt
- 武汉大学数学与统计学院:《数值分析》第八章 常微分方程的数值方法(8.3)stiff systems.ppt
- 武汉大学数学与统计学院:《数值分析》第9章 矩阵特征值问题的数值方法(9.5)乘幂法和QR算法.ppt
- 武汉大学数学与统计学院:《数值分析》第9章 矩阵特征值问题的数值方法(9.1-9.4)特征值和Jacobi方法.ppt
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)计算机模拟法相关知识——怎样产生随机数.doc
- 石家庄经济学院:《数学软件与实验》授课计划.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第八章 海港系统卸载货物的计算机模拟(8.4)海港系统卸载货物的模拟.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第八章 海港系统卸载货物的计算机模拟(8.1-8.3)问题提出.doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第二章 飞机定价(方程求解).doc
- 河北地质大学(石家庄经济学院):《数学软件与实验》课程教学资源(数学建模实验解题)第九章 线性规划.doc