电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning

Lecture 4 Association Rules of Data Reasoning Dr.李晓瑜Xiaoyu Li Email:xiaoyuuestc@uestc.edu.cn http://blog.sciencenet.cn/u/uestc2014xiaoyu 2019-Spring SunData Group http://www.sundatagroup.org School of Information and Software Engineering,UESTC 1966 Copyright2019 by Xiaoyu Li
Dr.李晓瑜 Xiaoyu Li Email:xiaoyuuestc@uestc.edu.cn http://blog.sciencenet.cn/u/uestc2014xiaoyu 2019-Spring Lecture 4 Association Rules of Data Reasoning SunData Group http://www.sundatagroup.org/ School of Information and Software Engineering, UESTC Copyright © 2019 by Xiaoyu Li. 1

S1at3Go是10 Content (5H) 4.1 The basic concept of association rules 4.2 Low-dimensional binary association rules .4.3 Multi-level association rules 4.4 Multidimensional association rules 4.5 The Affinity analysis based on the association mining 5 Copyright 2019 by Xiaoyu Li
Content(5H) 4.1 The basic concept of association rules 4.2 Low-dimensional binary association rules 4.3 Multi-level association rules 4.4 Multidimensional association rules 4.5 The Affinity analysis based on the association mining Copyright © 2019 by Xiaoyu Li. 5

Group Target DATA Based on Apriori algorithm of low dimensional binary association rule learning. Multidimensional association rules discovery and learning. 6 Copyright 2019 by Xiaoyu Li
Target Based on Apriori algorithm of low dimensional binary association rule learning. Multidimensional association rules discovery and learning. Copyright © 2019 by Xiaoyu Li. 6

Association rules Part IⅡ Introduction Non-Structured 。Raw data ·Regression 。 Key problem ·Pre-processing ●Association ·Conclusion ·Clustering ·Classification Part I Part Fig.1.Review the structure of course 7 DATA Copyright 2019 by Xiaoyu Li
7 • Introduction • Raw data • Pre-processing Part I • Regression •Association • Clustering • Classification Part II • Non-Structured • Key problem • Conclusion Part III Fig.1. Review the structure of course Copyright © 2019 by Xiaoyu Li. Association Rules

Example Which items are frequently purchased together by customers? Shopping Baskets bread milk bread milk bread milk cereal sugar eggs butter Customer 1 Customer 2 Customer 3 sugar eggs Market Analyst Customer n DATA 8 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 8 Example

Analysis of shopping basket Market-Basket transactions Example of Association Rules TID Items Bread,Milk Diaper})→{Beer, (Milk,Bread)[Eggs,Coke}, 2 Bread,Diaper,Beer,Eggs {Beer,Bread)→{Milk, Milk,Diaper,Beer,Coke Bread,Milk,Diaper,Beer Implication means co-occurrence, Bread,Milk,Diaper,Coke not causality! Given a set of transactions,find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction ATA 9 Copyright 2019 by Xiaoyu Li
9 Copyright © 2019 by Xiaoyu Li. Analysis of shopping basket

Association Rules What are association rules? Boolean association rules Overview Multilevel association rules Quantitative association rules Multidimensional association rules Constraint-based association mining ● Summary DATA 10 Copyright 2019 by Xiaoyu Li
10 Copyright © 2019 by Xiaoyu Li. Association Rules

What are Association Rules? .Association rule mining: *"Finding frequent patterns,associations, correlations,or causal structures among sets of items or objects in transactional databases,relational databases,and other information repositories." ·Applications: 米 market basket data analysis,cross-marketing, catalog design,loss-leader analysis,etc. DATA 11 Copyright 2019 by Xiaoyu Li
11 Copyright © 2019 by Xiaoyu Li. What are Association Rules?

Properties of Association Rules Express how items or objects are related to each other,and how they tend to group together. Simple to understand (comprehensibility). Provide useful information (utilizability) Efficient discovery algorithms exist (efficiency). 12 DATA Copyright 2019 by Xiaoyu Li
12 Copyright © 2019 by Xiaoyu Li. Properties of Association Rules

Analysis of Example 1 Analysis of customers buying habits by finding associations between the different items that customers place in their "shopping baskets". Customer 1 Customer 3 Milk,eggs, cereal,bread Milk,eggs, Eggs,sugar sugar,bread Customer 2 13 DATA Copyright 2019 by Xiaoyu Li
13 Copyright © 2019 by Xiaoyu Li. Analysis of Example 1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(FP-growth Algorithm).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(Apriori Algorithm、Improve of Apriori Algorithm).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 05 Clustering Analysis.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 03 Regression Analysis and Classification.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 03 Regression Analysis(Logistic Regression).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 02 Raw Data Analysis and Pre-processing(2.1-2.4).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 02 Raw Data Analysis and Pre-processing(2.5-2.7).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 01 Overview Data Analysis and Data Mining(李晓瑜).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子降维算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子神经网络(Neural Network,NN).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子支持向量机(support vector machine, SVM).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子机器学习(量子K-means算法).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)隐马尔科夫算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)降维算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)分类算法(朱钦圣).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)聚类算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子力学.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)决策树.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)线性模型.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)模型评估与选择.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 06 Classification.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第一章 算法概述 Algorithm Introduction(刘瑶、陈佳).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第二章 递归与分治策略.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第三章 动态规划 Dynamic Programming.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第四章 贪心算法(Greedy Algorithm).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第五章 回朔法(Backtracking Algorithm).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第六章 分支限界法(Branch and Bound Method).pdf
- 上饶师范学院:《数据库系统原理 An Introduction to Database System》课程教学资源(电子教案,颜清).doc
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)01 Introduction(肖鸣宇).pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)Stable Matching.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)02 Basics of algorithm design & analysis.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)03 Maximum Flow.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)04 NP and Computational Intractability.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)05 Approximation Algorithms.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第1章 概述(李发根).pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第2章 古典密码.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第3章 流密码.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第4章 分组密码.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第5章 Hash函数.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第6章 公钥密码(一)6.1-6.4.pdf