电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 05 Clustering Analysis

Lecture 5 Clustering Analysis Dr.李晓瑜Xiaoyu Li Email:xiaoyuuestc@uestc.edu.cn http://blog.sciencenet.cn/u/uestc2014xiaoyu 2019-Spring SunData Group http://www.sundatagroup.org School of Information and Software Engineering,UESTC 1966 Copyright2019 by Xiaoyu Li
Dr.李晓瑜 Xiaoyu Li Email:xiaoyuuestc@uestc.edu.cn http://blog.sciencenet.cn/u/uestc2014xiaoyu 2019-Spring Lecture 5 Clustering Analysis SunData Group http://www.sundatagroup.org/ School of Information and Software Engineering, UESTC Copyright © 2019 by Xiaoyu Li. 1

●30 ata Gro10 Content (6H) 5.1 Introduction of clustering analysis 5.2 Similarity calculation 5.3 Overview of basic clustering techniques .5.4 Partitioning method 5.5 Hierarchical method 5.6 Clustering based on density and grid 5.7 Clustering based on models ·5.8 Outlier analysis 2 Copyright 2019 by Xiaoyu Li
Content(6H) 5.1 Introduction of clustering analysis 5.2 Similarity calculation 5.3 Overview of basic clustering techniques 5.4 Partitioning method 5.5 Hierarchical method 5.6 Clustering based on density and grid 5.7 Clustering based on models 5.8 Outlier analysis Copyright © 2019 by Xiaoyu Li. 2

Introduction of Clustering 4 DATA 3 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 3 Introduction of Clustering

1 What's Cluster Analysis?(1) ·“物以类聚,人以群分” Birds of the same feather flock together. 口 口 The result of a cluster analysis shown as the coloring of the squares into three clusters. DATA 4 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 4 1 What’s Cluster Analysis?(1) “物以类聚,人以群分” Birds of the same feather flock together. The result of a cluster analysis shown as the coloring of the squares into three clusters

1 What's Cluster Analysis?(2) Clustering(cluster):Collection of data objects .Objects are similar in the same cluster(high intra-class similarity). Objects are different in different cluster(low inter-class similarity). Cluster Analysis Grouping the collection of physical or abstract objects into a process of multiple classes composed of similar objects. ATA 5 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 5 Clustering(cluster): Collection of data objects Objects are similar in the same cluster(high intra-class similarity). Objects are different in different cluster(low inter-class similarity). Cluster Analysis Grouping the collection of physical or abstract objects into a process of multiple classes composed of similar objects. 1 What’s Cluster Analysis?(2)

1 What's Cluster Analysis?(3) Clustering is an unsupervised learning: No predefined class number Data mining function of clustering analysis .As an independent tool to obtain data distribution .As other algorithms'preprocessing steps (e.g. feature and classification) DATA 6 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 6 Clustering is an unsupervised learning: No predefined class number Data mining function of clustering analysis As an independent tool to obtain data distribution As other algorithms’ preprocessing steps (e.g. feature and classification) 1 What’s Cluster Analysis?(3)

2 Typical Applications(1) 。Pattern recognition Spatial data analysis Cluster the similar regions and generate topic map in the GIS system. Exam spatial clustering and give its explanation in spatial data mining Image processing .Economics Especially in Market Research ATA 7 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 7 2 Typical Applications(1) Pattern recognition Spatial data analysis Cluster the similar regions and generate topic map in the GIS system. Exam spatial clustering and give its explanation in spatial data mining Image processing Economics( Especially in Market Research )

2 Typical Applications(2) Web Classify the documents on WEB Cluster the Web log data to find the same user access mode 。Marketing Help market analysts to find a different customer base from the customer base,so different customers can use different marketing strategy ●Earthquake research Cluster the observed epicenter points along the plate fault zone,and get the seismic risk zone ATA 8 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 8 2 Typical Applications(2) Web Classify the documents on WEB Cluster the Web log data to find the same user access mode Marketing Help market analysts to find a different customer base from the customer base, so different customers can use different marketing strategy Earthquake research Cluster the observed epicenter points along the plate fault zone, and get the seismic risk zone

2 Typical Applications(3) ●Land use In the database of earth monitoring,the same land use region is found ·Insurance industry The customer base of the higher claim rate in automobile insurance is found 。Urban planning Group it according to the type of house,value and location ATA 9 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 9 2 Typical Applications(3) Land use In the database of earth monitoring, the same land use region is found Insurance industry The customer base of the higher claim rate in automobile insurance is found Urban planning Group it according to the type of house, value and location

3 What's Good Clustering Analysis? High class internal similarity; Low class similarity; As a branch of statistics,the clustering analysis researchi theme is mainly based 0n distance- clustering a high-quality clustering analysis result will be decided on the used clustering method; The implementation of the similarity measure and the method used in clustering method; Ability to discover hidden patterns. ATA 10 Copyright 2019 by Xiaoyu Li
Copyright © 2019 by Xiaoyu Li. 10 3 What’s Good Clustering Analysis? High class internal similarity; Low class similarity; As a branch of statistics, the clustering analysis research theme is mainly based on distanceclustering ; a high-quality clustering analysis result will be decided on the used clustering method; The implementation of the similarity measure and the method used in clustering method; Ability to discover hidden patterns
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 03 Regression Analysis and Classification.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 03 Regression Analysis(Logistic Regression).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 02 Raw Data Analysis and Pre-processing(2.1-2.4).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 02 Raw Data Analysis and Pre-processing(2.5-2.7).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 01 Overview Data Analysis and Data Mining(李晓瑜).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子降维算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子神经网络(Neural Network,NN).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子支持向量机(support vector machine, SVM).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子机器学习(量子K-means算法).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)隐马尔科夫算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)降维算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)分类算法(朱钦圣).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)聚类算法.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)量子力学.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)决策树.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)线性模型.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)模型评估与选择.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)绪论.pdf
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 25 软件开发的新方法 New Methodology(Agile方法).ppt
- 南京大学:《软件工程 Software Engineering》课程教学资源(PPT课件讲稿)Part 24 软件工程中的高级课题 Advanced Topics in Software Engineering.ppt
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(Apriori Algorithm、Improve of Apriori Algorithm).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(FP-growth Algorithm).pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning.pdf
- 电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 06 Classification.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第一章 算法概述 Algorithm Introduction(刘瑶、陈佳).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第二章 递归与分治策略.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第三章 动态规划 Dynamic Programming.pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第四章 贪心算法(Greedy Algorithm).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第五章 回朔法(Backtracking Algorithm).pdf
- 电子科技大学:《算法设计与分析 Algorithms Design and Analysis》课程教学资源(课件讲稿)第六章 分支限界法(Branch and Bound Method).pdf
- 上饶师范学院:《数据库系统原理 An Introduction to Database System》课程教学资源(电子教案,颜清).doc
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)01 Introduction(肖鸣宇).pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)Stable Matching.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)02 Basics of algorithm design & analysis.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)03 Maximum Flow.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)04 NP and Computational Intractability.pdf
- 电子科技大学:《算法设计与分析 Design and Analysis of Algorithms》研究生课程教学资源(课件讲稿,英文版)05 Approximation Algorithms.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第1章 概述(李发根).pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第2章 古典密码.pdf
- 电子科技大学:《现代密码理论 Modern Cryptographic Theory》课程教学资源(课件讲稿)第3章 流密码.pdf