南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)01 Introduction - Min-Cut and Max-Cut(尹⼀通)

Advanced Algorithms Introduction:Min-Cut and Max-Cut 尹-通Nanjing University,2022Fall
尹⼀通 Nanjing University, 2022 Fall Advanced Algorithms Introduction: Min-Cut and Max-Cut

Textbooks MIZED IMS Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,1995. VIJAY V.VAZIRANT Approximation Vijay Vazirani Algorithms Approximation Algorithms. Spinger-Verlag,2001
Textbooks Vijay Vazirani Approximation Algorithms. Spinger-Verlag, 2001. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995

References Probability and Mitzenmacher and Upfal. Computing Probability and Computing, in Alpethms and Data Anlysis 2nd Ed. and Eli Upfal The DESIGN of APPROXIMATION ALGORITHMS Williamson and Shmoys SECOND EDITION The Design of Approximation Algorithms Wiley Series in Discrete Mathematics and Optimizatlor Alon and Spencer The Probabilistic Method, Fourth Edition THE PROBABILISTIC 4th Ed. Clyorithms METHOD NOGA ALON-JOEL H.SPENCER DPV Sanjoy Dasgupta 房 Christos Papadimitriou Umesh Vaxirani Algorithms WILEY
References Mitzenmacher and Upfal. Probability and Computing, 2nd Ed. Williamson and Shmoys The Design of Approximation Algorithms Alon and Spencer The Probabilistic Method, 4th Ed. DPV Algorithms

Muhammad ibn Musa al-KhwarizmI (780-850) Advanced Algorithms
Advanced Algorithms Muḥammad ibn Mūsā al-Khwārizmī (780-850)

Minimum Cut
Minimum Cut

Min-Cut E(S,T)={uw∈E|u∈S,v∈T} Undirected graph G(V,E) Bi-partition of Vinto nonempty S and T Find a cut E(S,T)of smallest size (global min-cut) Deterministic algorithms: max-flow min-cut(duality) best upper bound (2021):m1+(1) O(.):ignore poly-logarithmic factors
Min-Cut • Undirected graph • Bi-partition of into nonempty and • Find a cut of smallest size (global min-cut) • Deterministic algorithms: • max-flow min-cut (duality) • best upper bound (2021): G(V, E) V S T E(S, T) m1+o(1) T S E(S, T) = {uv ∈ E ∣ u ∈ S, v ∈ T} : ignore poly-logarithmic factors O˜( ⋅ )

Min-Cut E(S,T)={uw∈E|u∈S,v∈T} Undirected graph G(V,E) ·Too many cuts: there are 29()bi-partitions ·(will see later)only at most O(n)min-cuts Generate a random cut that is a min-cut with large enough probability?
Min-Cut • Undirected graph • Too many cuts: • there are bi-partitions • (will see later) only at most min-cuts • Generate a random cut that is a min-cut with large enough probability? G(V, E) 2Ω(n) O(n2 ) T S E(S, T) = {uv ∈ E ∣ u ∈ S, v ∈ T}

Contraction Undirected multigraph GV,E) ·multigraph: ·allow parallel edges ·but no self-loop contract(e):e uv is an edge merges two endpoints u and v
Contraction • Undirected multigraph • multigraph: • allow parallel edges • but no self-loop • contract( ): is an edge • merges two endpoints and G(V, E) e e = uv u v e

Contraction Undirected multigraph GV,E) 。multigraph: ·allow parallel edges ·but no self-loop contract(e):e uv is an edge merges two endpoints u and v
Contraction • Undirected multigraph • multigraph: • allow parallel edges • but no self-loop • contract( ): is an edge • merges two endpoints and G(V, E) e e = uv u v

Karger's Min-Cut Algorithm ·multigraph G(V,E) Karger's Algorithm: whileV>2 do: pick random e∈E; contract(e); return remaining edges; random:uniformly and independently at random
Karger’s Algorithm: while do: pick random ; contract ; return remaining edges; |V| > 2 e ∈ E (e) • multigraph G(V, E) Karger’s Min-Cut Algorithm random: uniformly and independently at random
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls-into-Bins Model and Chernoff Bounds.pptx
- 《量子计算》课程教学资源(阅读文献)Lecture Notes on Quantum Algorithms(Andrew M. Childs).pdf
- 《量子计算》课程教学资源(阅读文献)Quantum Computation and Quantum Information(10th Anniversary Edition,Michael A. Nielsen & Isaac L. Chuang).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Computational Complexity - A Modern Approach.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Approximation via Correlation Decay when Strong Spatial Mixing Fails(HIS).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Galton–Watson process - Branching.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Analysis Of Boolean Functions(Ryan O’Donnell).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 14 假设检验.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 13 区间估计(参数估计).pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 12 点估计(参数估计).pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 11 统计量与抽样分布.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 10 极限理论.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 09 典型二维连续型随机变量、相关系数.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 08 典型连续型随机变量的分布.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 07 连续型随机变量.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 06 概率化方法(主讲:唐斌).pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 05 条件期望、方差.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 04 几个典型的离散型随机变量.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 03 离散型随机变量.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 02 几何概型、条件概率与独立性.pptx
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)02 Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)04 Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)05 Concentration of measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)06 Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)07 Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)08 Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)09 Rounding Dynamic Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)10 Rounding Linear Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)11 The Primal-Dual Schema.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)12 SDP-Based Algorithms.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(教学大纲,杨春).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)01 图论简介、图的定义及其相关概念、图的同构.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)02 完全图、偶图与补图、顶点的度与图的度序列.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)03 子图的相关概念、几种典型的图运算、路与连通性.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)04 图的代数表示、最短路算法.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)05 邻接谱、邻接代数与图空间、托兰定理.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)06 树的概念与应用、树的性质、树的中心与形心.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)07 生成树的概念与性质、生成树的计数、回路系统简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)08 克鲁斯克尔算法、管梅谷的破圈法、Prim算法、根树简介.pdf