南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)12 SDP-Based Algorithms

Advanced Algorithms SDP-Based Algorithms 尹一通Nanjing University,2022Fall
尹⼀通 Nanjing University, 2022 Fall Advanced Algorithms SDP-Based Algorithms

Max-Cut Instance:An undirected graph G(V,E). Solution:A bipartition of Vinto S and Ithat maximizes the cut E(S,T)={w,v}∈E|w∈S∧v∈T}. NP-hard. One of Karp's 21 NP-complete problems(reduction from the Partition problem). a typical Max-CSP(Constraint Satisfaction Problem). Greedy is 1/2-approximate. Local search is 1/2-approximate
Max-Cut Instance: An undirected graph . Solution: A bipartition of into and that maximizes the cut . G(V, E) V S T E(S, T) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T} T S • NP-hard. • One of Karp’s 21 NP-complete problems (reduction from the Partition problem). • a typical Max-CSP (Constraint Satisfaction Problem). • Greedy is 1/2-approximate. • Local search is 1/2-approximate

Max-Cut Instance:An undirected graph G(V,E). Solution:A bipartition of Vinto S and Ithat maximizes the cut E(S,T)={w,v}∈E|w∈S∧v∈T}. max Yuv uv∈E not linear S.t. yuu≤lEu-xul, Vuw∈E xu∈{0,1, Vu∈V
Max-Cut Instance: An undirected graph . Solution: A bipartition of into and that maximizes the cut . G(V, E) V S T E(S, T) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T} T S max X uv2E yuv s.t. yuv |xu xv|, xv 2 {0, 1}, 8uv 2 E 8v 2 V not linear

Max-Cut Instance:An undirected graph G(V,E). Solution:A bipartition of V into S and I that maximizes the cut E(S,T)={u,v}∈E|u∈S∧v∈T. max Yuv uw∈E s.t. yuv≤yuw+ywv, ,v,w∈V yuw+yuw+yu≤2,u,v,2w∈V yuw∈{0,1}, u,v∈V u,y,w∈V:0or2of{u,y以,{y,w以,{u,w} are“crossing pairs
Max-Cut Instance: An undirected graph . Solution: A bipartition of into and that maximizes the cut . G(V, E) V S T E(S, T) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T} T S max X uv2E yuv s.t. yuv 2 {0, 1}, yuv yuw + ywv, yuv + yuw + ywv 2, 8u, v, w 2 V 8u, v, w 2 V 8u, v 2 V ∀u,v,w ∈ V: 0 or 2 of {u,v}, {v,w}, {u,w} are “crossing pairs

Max-Cut Instance:An undirected graph G(V,E). Solution:A bipartition of V into S and I that maximizes the cut E(S,T)={w,v}∈E|uw∈S∧v∈T}. max ∑aw integrality gap≥2 uw∈E S.t.yuw≤yuw+yww, u,v,w∈V 人 yuw+yuw+ywu≤2,,v,w∈V yuv∈{0,1}, u,v∈V V8>0:3G s.t.OPTLP(G)/OPTIP(G)>2-8
Max-Cut Instance: An undirected graph . Solution: A bipartition of into and that maximizes the cut . G(V, E) V S T E(S, T) = {{u, v} ∈ E ∣ u ∈ S ∧ v ∈ T} T S max X uv2E yuv s.t. yuv 2 {0, 1}, yuv yuw + ywv, yuv + yuw + ywv 2, 8u, v, w 2 V 8u, v, w 2 V 8u, v 2 V integrality gap ≥ 2 ∀ε>0: ∃G s.t. OPTLP(G)/OPTIP(G) > 2-ε

Quadratic Program for Max-Cut max Yuv uw∈E s.t. yuu≤lxu-xul, uw∈E xv∈{0,1}, u∈V quadratic program: max ∑a uv∈E s.t. yuw≤(1-Eucw),uw∈E xw∈{-1,1}, Vu∈V
Quadratic Program for Max-Cut 1 2 yuv (1 xuxv) yuv X uv2E T S max s.t. 8uv 2 E xv 2 {1, 1}, 8v 2 V quadratic program: , max X uv2E yuv s.t. yuv |xu xv|, xv 2 {0, 1}, 8uv 2 E 8v 2 V

Quadratic Program for Max-Cut max Yuv uw∈E S.t.yuw≤lxu-xv, /uv∈E xv∈{0,1, V∈V strictly quadratic program: max ∑1-xuo) uw∈E S.t. x=1, u∈V Nonlinear,non-convex!
Quadratic Program for Max-Cut T S strictly quadratic program: max s.t. 1 2 (1 xuxv) X uv2E x 8v 2 V 2 v = 1, Nonlinear, non-convex! max X uv2E yuv s.t. yuv |xu xv|, xv 2 {0, 1}, 8uv 2 E 8v 2 V

Relaxation strictly quadratic program: max (1-au2o) uw∈E S.t. 品=1, H∈V relax to vector program: semidefinite program (SDP) max 2∑1-,》 inner-products: uv∈E (cu,x〉=x(zu() i=1 S.t. (cu,cu〉=1, v∈V cu∈Rn, Hu∈V n =IV
Relaxation strictly quadratic program: max s.t. 1 2 (1 xuxv) X uv2E x 8v 2 V 2 v = 1, relax to vector program: n = |V| semidefinite program (SDP) 1 2 X uv2E max (1 hxu, xvi) s.t. 8v 2 V xv 2 R 8v 2 V n , hxv, xvi = 1, hxu, xvi = X n i=1 xv(i)xu(i) inner-products:

Positive Semidefiniteness (PSD) Definition(Positive Semidefiniteness): A symmetric square matrix A E R"x is said to be positive semidefinite,denoted A>≥0,ifVx∈R”,xTAx≥0. Theorem: For symmetric A E R"X",the followings are equivalent: ·A≥0 all eigenvalues(A)≥0 ·A=BB for some B∈Rnxn
Positive Semidefiniteness (PSD) Definition (Positive Semidefiniteness): A symmetric square matrix is said to be positive semidefinite, denoted , if , . A ∈ ℝn×n A ≽ 0 ∀x ∈ ℝn xTAx ≥ 0 Theorem: For symmetric , the followings are equivalent: • • all eigenvalues • for some A ∈ ℝn×n A ≽ 0 λ(A) ≥ 0 A = BTB B ∈ ℝn×n

Semidefinite Programing (SDP) ·Given C,A,,Ak∈Rmx"andb1,b2,,bk∈R maximize 1 (cry)=∑∑c i-1 j=1 subject to tr(AY)≤b, V1≤r≤k Y≥0 symmetric Y∈Rnxn
• Given C, A and 1,…, Ak ∈ ℝn×n b1, b2,…, bk ∈ ℝ Semidefinite Programing (SDP) maximize subject to , symmetric tr(CTY) = n ∑ i=1 n ∑ j=1 cij yij tr(AT r Y) ≤ br ∀1 ≤ r ≤ k Y ≽ 0 Y ∈ ℝn×n
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)11 The Primal-Dual Schema.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)10 Rounding Linear Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)09 Rounding Dynamic Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)08 Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)07 Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)06 Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)05 Concentration of measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)04 Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)02 Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)01 Introduction - Min-Cut and Max-Cut(尹⼀通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls-into-Bins Model and Chernoff Bounds.pptx
- 《量子计算》课程教学资源(阅读文献)Lecture Notes on Quantum Algorithms(Andrew M. Childs).pdf
- 《量子计算》课程教学资源(阅读文献)Quantum Computation and Quantum Information(10th Anniversary Edition,Michael A. Nielsen & Isaac L. Chuang).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Computational Complexity - A Modern Approach.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Approximation via Correlation Decay when Strong Spatial Mixing Fails(HIS).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Galton–Watson process - Branching.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Analysis Of Boolean Functions(Ryan O’Donnell).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 14 假设检验.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 13 区间估计(参数估计).pptx
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(教学大纲,杨春).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)01 图论简介、图的定义及其相关概念、图的同构.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)02 完全图、偶图与补图、顶点的度与图的度序列.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)03 子图的相关概念、几种典型的图运算、路与连通性.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)04 图的代数表示、最短路算法.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)05 邻接谱、邻接代数与图空间、托兰定理.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)06 树的概念与应用、树的性质、树的中心与形心.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)07 生成树的概念与性质、生成树的计数、回路系统简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)08 克鲁斯克尔算法、管梅谷的破圈法、Prim算法、根树简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)09 图的连通性(割边、割点和块).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)10 网络的容错性参数.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)11 图的宽直径简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)12 欧拉图与哈密尔顿图(欧拉图与中国邮路问题).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)13 哈密尔顿图.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)14 度极大非哈密尔顿图与TSP问题.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)15 超哈密尔顿图与超可迹图问题.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)16 匹配与因子分解(偶图的匹配问题).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)17 托特定理与图的因子分解.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)18 匈牙利算法与最优匹配算法.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)19 平面图概念与性质.pdf