南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)11 The Primal-Dual Schema

Advanced Algorithms LP Duality 尹一通Nanjing University,2022Fall
尹⼀通 Nanjing University, 2022 Fall Advanced Algorithms LP Duality

Flow Network ·Digraph:D(V,E) source:S∈V sink:t∈V .Capacity c:E→R≥o 0/1 0/1 0/1 0/1 0/3 S 0/3 0/4 0/1 0/4 0/1
• Digraph: • Capacity D(V, E) c : E → ℝ≥0 Flow Network 0/1 0/4 0/1 0/1 0/1 0/1 0/1 0/4 0/3 0/3 s t • source: sink: • Flow s ∈ V t ∈ V f : E → ℝ≥0

Network Flow ·Digraph:D(V,E) ·source:s∈V sink:t∈V 。Capacity c:E→Ro ·F1owf:E→R≥0 11 1/3 1/3 1/1 214 0/1 ·Capacity:H(u,)∈E,fw≤Cuw ·Conservation::Vu∈八{s,t,∑wEEw=∑u,beE Jin
• Digraph: • Capacity D(V, E) c : E → ℝ≥0 Network Flow • source: sink: • Flow s ∈ V t ∈ V f : E → ℝ≥0 • Capacity: , • Conservation: , ∀(u, v) ∈ E f uv ≤ cuv ∀u ∈ V∖{s, t} 1/1 2/4 0/1 1/1 1/1 1/1 1/1 2/4 1/3 1/3 ∑(w,u)∈E f wu = ∑(u,v)∈E f uv s t

Network Flow 1/4 1/3 1/3 1/1 2/4 071 ·Capacity::(u,v)∈E,fw≤Cuv ·Conservation:Vu∈V\{s,th,∑DE=∑uyeE fiw 。Value of flow: ∑fu=∑r (S,u)∈E (v,t)∈E
Network Flow • Capacity: , • Conservation: , ∀(u, v) ∈ E f uv ≤ cuv ∀u ∈ V∖{s, t} ∑(w,u)∈E f wu = ∑(u,v)∈E f uv ∑ (s,u)∈E f su = ∑ (v,t)∈E f vt • Value of flow: 1/1 2/4 0/1 1/1 1/1 1/1 1/1 2/4 1/3 1/3 s t

Maximum Flow 0/1 1/1 1/1 1/1 2/3 S 23 34 1/1 3/4 0/1 ·Capacity:(u,v)∈E,fw≤Cuw ·Conservation:Vu∈V八{s,t,∑wEF Fiv=∑u,ner fio ·Value of flow: ∑fu=∑r (S,u)∈E (v,t)∈E
Maximum Flow • Capacity: , • Conservation: , ∀(u, v) ∈ E f uv ≤ cuv ∀u ∈ V∖{s, t} ∑(w,u)∈E f wu = ∑(u,v)∈E f uv ∑ (s,u)∈E f su = ∑ (v,t)∈E f vt • Value of flow: s t 1/1 3/4 0/1 1/1 1/1 0/1 1/1 3/4 2/3 2/3

Cut ·Digraph:D(V,E) ·source:s∈V sink:t∈V ·Capacity c:E→R0·Cut ScV,s∈S,ttS 0/1 0/1 0/1 0/1 0/3 0/3 0/4 ,0/1 0/1 。Value of cut: Σ Cuv u∈S,v庄S,(u,v)∈E
• Digraph: • Capacity D(V, E) c : E → ℝ≥0 Cut 0/1 0/4 0/1 0/1 0/1 0/1 0/1 0/4 0/3 0/3 s t • source: sink: • Cut , , s ∈ V t ∈ V S ⊂ V s ∈ S t ∉ S • Value of cut: ∑ u∈S,v∉S,(u,v)∈E cuv

Minimum Cut ·Digraph:D(V,E) ·source:S∈V sink:t∈V ·Capacity c:E→R≥o ·Cut SCV,S∈S,t庄S 0/1 0/1 0/3 0/3 0/4 0/1 。Value of cut: Σ Cuv u∈S,v庄S,(u,v)∈E
• Digraph: • Capacity D(V, E) c : E → ℝ≥0 Minimum Cut 0/1 0/4 0/1 0/1 0/1 0/1 0/1 0/4 0/3 0/3 s t • source: sink: • Cut , , s ∈ V t ∈ V S ⊂ V s ∈ S t ∉ S • Value of cut: ∑ u∈S,v∉S,(u,v)∈E cuv

Fundamental Theorem of Flow .Flow network:D(V,E),s,t∈V,andc:E→R≥o 。Max-flow=min-cut 。With integral capacity c:E→Z≥o,the maximum flow is achieved by an integer flow f:E→Z≥o 0/1 0/1 0/1 0/1 0/3 S t 0/3 0/4 0/1 0/4 0/1
• Flow network: , , and • Max-flow = min-cut • With integral capacity , the maximum flow is achieved by an integer flow . D(V, E) s, t ∈ V c : E → ℝ≥0 c : E → ℤ≥0 f : E → ℤ≥0 Fundamental Theorem of Flow 0/1 0/4 0/1 0/1 0/1 0/1 0/1 0/4 0/3 0/3 s t

Fundamental Theorem of Flow .Flow network:D(V,E),s,t∈V,andc:E→R≥0 ·Max-flow=min-cut 、With integral capacity c:E→Z≥o,the maximum flow is achieved by an integer flow f:E→Z≥o- 0/1 01 0/1 0/3 S 0/3 0/4 0/1
• Flow network: , , and • Max-flow = min-cut • With integral capacity , the maximum flow is achieved by an integer flow . D(V, E) s, t ∈ V c : E → ℝ≥0 c : E → ℤ≥0 f : E → ℤ≥0 Fundamental Theorem of Flow s t 0/1 0/4 0/1 0/1 0/1 0/1 0/1 0/4 0/3 0/3

Fundamental Theorem of Flow .Flow network:D(V,E),s,t∈V,andc:E→R≥0 。Max-flow=min-cut 。With integral capacity c:E→Z≥o,the maximum flow is achieved by an integer flowf:E→Z≥o- 0/1 1/1 1/1 2/3 S 23 314 1/1 3/4 01
• Flow network: , , and • Max-flow = min-cut • With integral capacity , the maximum flow is achieved by an integer flow . D(V, E) s, t ∈ V c : E → ℝ≥0 c : E → ℤ≥0 f : E → ℤ≥0 Fundamental Theorem of Flow s t 1/1 3/4 0/1 1/1 1/1 0/1 1/1 3/4 2/3 2/3
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)10 Rounding Linear Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)09 Rounding Dynamic Programs.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)08 Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)07 Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)06 Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)05 Concentration of measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)04 Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)02 Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)01 Introduction - Min-Cut and Max-Cut(尹⼀通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)03 Balls-into-Bins Model and Chernoff Bounds.pptx
- 《量子计算》课程教学资源(阅读文献)Lecture Notes on Quantum Algorithms(Andrew M. Childs).pdf
- 《量子计算》课程教学资源(阅读文献)Quantum Computation and Quantum Information(10th Anniversary Edition,Michael A. Nielsen & Isaac L. Chuang).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Computational Complexity - A Modern Approach.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Approximation via Correlation Decay when Strong Spatial Mixing Fails(HIS).pdf
- 《理论计算机科学》课程教学资源(阅读文献)Galton–Watson process - Branching.pdf
- 《理论计算机科学》课程教学资源(阅读文献)Analysis Of Boolean Functions(Ryan O’Donnell).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 14 假设检验.pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 13 区间估计(参数估计).pptx
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(PPT课件讲稿)Lecture 12 点估计(参数估计).pptx
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)12 SDP-Based Algorithms.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(教学大纲,杨春).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)01 图论简介、图的定义及其相关概念、图的同构.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)02 完全图、偶图与补图、顶点的度与图的度序列.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)03 子图的相关概念、几种典型的图运算、路与连通性.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)04 图的代数表示、最短路算法.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)05 邻接谱、邻接代数与图空间、托兰定理.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)06 树的概念与应用、树的性质、树的中心与形心.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)07 生成树的概念与性质、生成树的计数、回路系统简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)08 克鲁斯克尔算法、管梅谷的破圈法、Prim算法、根树简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)09 图的连通性(割边、割点和块).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)10 网络的容错性参数.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)11 图的宽直径简介.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)12 欧拉图与哈密尔顿图(欧拉图与中国邮路问题).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)13 哈密尔顿图.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)14 度极大非哈密尔顿图与TSP问题.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)15 超哈密尔顿图与超可迹图问题.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)16 匹配与因子分解(偶图的匹配问题).pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)17 托特定理与图的因子分解.pdf
- 电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)18 匈牙利算法与最优匹配算法.pdf