《数理统计》课程教学资源(参考资料)Large sample properties of MLE 04

63 Section 8.4.Example Let {(Ri,Xi):i=1,...,n}be an i.i.d.sample of n random vectors (R,X).Here R is a response indicator and X is a covariate.We assume that logitP[R 1X]=a+BX and assume that X is normally distributed with mean u and variance o2.So,our probability model has four parameters, 0=(a,B,u,o2).Let 0o =(ao,Bo,uo,denote the true value of 0
63 Section 8.4. Example Let {(Ri, Xi) : i = 1,...,n} be an i.i.d. sample of n random vectors (R, X). Here R is a response indicator and X is a covariate. We assume that logitP[R = 1|X] = α + βX and assume that X is normally distributed with mean µ and variance σ2. So, our probability model has four parameters, θ = (α, β, µ, σ2). Let θ0 = (α0, β0, µ0, σ20) denote the true value of θ

64 a.For a given realization of the data,write out the likelihood function of 0. 42-p2点g-An+
64 a. For a given realization of the data, write out the likelihood function of θ. L(θ; x, r) = n i=1 1 σ√2π exp(− 12σ2 (xi − µ)2) exp(ri(α + βxi)) 1 + exp(α + βxi)

65 b.Find the maximum likelihood estimator of 0,0(If there exists a closed form solution,then present it.If not,indicate how a solution can be found). To find the MLE,solve the score equations.The log-likelihood for an individual is 1e:x,r)x-l1oga)-2ox-m2+r(a+m)-log(1+exp(a+x》 1 The score vector for an individual is al(0;x,r) r exp(a+Bx) 8a 1+exp(a+Bx) al(0;x,r) x(r- exp(a+Bx) b(x,T;0)= 83 1+exp(a+Bx)) ∂l(0;c,r x一业 ∂μ 8l(0;x,r) 8o2 动 2G4
65 b. Find the maximum likelihood estimator of θ, ˆ θn (If there exists a closed form solution, then present it. If not, indicate how a solution can be found). To find the MLE, solve the score equations. The log-likelihood for an individual is l(θ; x, r) ∝ − log(σ)− 12σ2 (x−µ)2 +r(α+βx)−log(1+ exp(α+βx)) The score vector for an individual is ψ(x, r; θ) = ⎡⎢ ⎢⎢⎢ ⎢⎣ ∂l(θ;x,r) ∂α ∂l(θ;x,r) ∂β ∂l(θ;x,r) ∂µ ∂l(θ;x,r) ∂σ2 ⎤⎥ ⎥⎥⎥ ⎥⎦ = ⎡⎢ ⎢⎢⎢ ⎢⎣ r − exp(α+βx) 1+exp(α+βx) x(r − exp(α+βx) 1+exp(α+βx) ) x−µ σ2 − 1 2σ2 + (x−µ)2 2σ4 ⎤⎥ ⎥⎥⎥ ⎥⎦

66 The score equations for the full sample are: m exp(a+i) ∑ exp(a+Bxi) =0 (1) i=1 -+=0 (2) i=1 x一业 =0 02 (3) i=1 n +0 2o4 (4) i=1 Note that Equations (3)and (4)can be solved explicitly to get solutions for a and 62,i.e., 在= 一 Ti ∑a:-创2 i=1 i=
66 The score equations for the full sample are: n i=1 ri − exp(α + βxi) 1 + exp(α + βxi) = 0 (1) n i=1 xi(ri − exp(α + βxi) 1 + exp(α + βxi)) = 0 (2) n i=1 xi − µ σ2 = 0 (3) n i=1 − 1 2σ2 + (xi − µ)2 2σ4 = 0 (4) Note that Equations (3) and (4) can be solved explicitly to get solutions for ˆµ and ˆσ2, i.e., µ ˆ = 1 n n i=1 xi and ˆσ2 = 1 n n i=1 (xi − µˆ)2

67 The solutions for a and B are obtained by solving Equations(1) and(2).This does not yield simple closed form solutions. Therefore,we use the Newton-Raphson algorithm.This entails computing the observed information matrix.Some of these computations will be needed later so let's compute the entire matrix of second partial derivatives.Let p() exp(a+Bxi) and qi(a,B)=1-pi(a,B),Now, 以物 where Jn1(a,)- ∑1p(a,3)g(a,3) ∑1cp(a,3)q(a,3) ∑1xp:(a,8)qa(a,3)∑=1p(a,3)q(a,)
67 The solutions for ˆα and β ˆ are obtained by solving Equations (1) and (2). This does not yield simple closed form solutions. Therefore, we use the Newton-Raphson algorithm. This entails computing the observed information matrix. Some of these computations will be needed later so let’s compute the entire matrix of second partial derivatives. Let pi(α, β) = exp(α+βxi) 1+exp(α+βxi) and qi(α, β)=1 − pi(α, β), Now, nJn(θ) = ⎡⎣ Jn1(α, β) 0 0 Jn2(µ, σ2) ⎤⎦ where Jn1(α, β) = ⎡⎣ ni=1 pi(α, β)qi(α, β) ni=1 xipi(α, β)qi(α, β) ni=1 xipi(α, β)qi(α, β) ni=1 x2i pi(α, β)qi(α, β) ⎤⎦

68 and 六∑1(r-川) To compute thethe solution to (1)and(2),we start with initial values for a and B,say a(0)and B(0),then update as follows: -)aw ∑=1(ri-p(a),gG) ∑1x(r:-p(a6),3) We iterate until convergence
68 and Jn2(µ, σ2) = ⎡⎣ nσ2 1σ4 ni=1(xi − µ) 1σ4 ni=1(xi − µ) − n2σ4 + 1σ6 ni=1(xi − µ)2 ⎤⎦ To compute the the solution to (1) and (2), we start with initial values for α and β, say α(0) and β(0), then update as follows: α(j+1) β(j+1) = α(j) β(j) +{Jn1(α(j), β(j))}−1· ni=1(ri − pi(α(j), β(j)) ni=1 xi(ri − pi(α(j), β(j)) We iterate until convergence.

69 Assume that la≤K1,ll≤K2,luW≤K3,andK4≤o2≤K5, where K1,...,K5 are finite positive quantities.Is the parameter space,e,compact?YES!Assume that 0o (truth)belongs to the interior of c.Verify all of the regularity conditions that are necessary to show that the MLE is both consistent and asymptotically normal. Refer to Section 8c.Condition i)is satisfied by assumption. Condition ii)is satisfied since logp(x,r;0)is continuous at each for all -oolog(2z)+llog(o)l+lzc2(-p)2|+lr(@+Bz)l+llog(1+exp(@+Bz)l
69 Assume that |α| ≤ K1, |β| ≤ K2, |µ| ≤ K3, and K4 ≤ σ2 ≤ K5, where K1,...,K5 are finite positive quantities. Is the parameter space, Θ, compact? YES! Assume that θ0 (truth) belongs to the interior of Θ. c. Verify all of the regularity conditions that are necessary to show that the MLE is both consistent and asymptotically normal. Refer to Section 8c. Condition i) is satisfied by assumption. Condition ii) is satisfied since log p(x, r; θ) is continuous at each θ for all −∞ <x< ∞ and r = 0, 1. Now, we need to show condition iii) that | log p(x, r; θ)| ≤ d(x, r) for all θ ∈ Θ and Eθ0 [d(X, R)] < ∞. log p(x, r; θ) = −12 log(2π)−log(σ)− 12σ2 (x−µ)2+r(α+βx)−log(1+exp(α+βx)) By the triangle inequality, we know that | log p(x, r; θ)| ≤ 12 log(2π)+| log(σ)|+| 12σ2 (x−µ)2|+|r(α+βx)|+| log(1+exp(α+βx))|

70
70

71 Some inequalities that we will need. |zl≤1+x2 log(1+exp(a+Bx)≥0 log(1+exp(a+Bx))<log(1+exp(la+)) ≤1+log(exp(Ia+lxl) 1+a+8xl ≤1+K1+K2(1+x2) log(ol≤号max(log(Kal,|log(KlD
71 Some inequalities that we will need. |x| ≤ 1 + x2 log(1 + exp(α + βx)) ≥ 0 log(1 + exp(α + βx)) ≤ log(1 + exp(|α| + |β||x|)) ≤ 1 + log(exp(|α| + |β||x|)) = 1+ |α| + |β||x| ≤ 1 + K1 + K2(1 + x2) | log(σ)| ≤ 12 max(| log(K4)|, | log(K5)|)

72 -≤2++ 202 云+++ x2, ≤ lr(a+Bx川≤la+l3lxl≤K1+K2(1+x2) 1log(1+exp(a+Bx)川≤1+K1+K2(1+x2) Let d(,)log()m(log()o 宏+++器++n++ 2K4+E 1+K1+K2(1+x2) Now,E0o[X2]=u+o<oo.This implies that E0o[d(X,R)]<oo. For condition iv),we have to show that p(x,r;0)is
72 | 12σ2 (x − µ)2| ≤ 12σ2 x2 + 1σ2 |µ||x| + µ2 2σ2 ≤ x2 2K4 + K3 K4 (1 + x2) + K23 2K4 |r(α + βx)|≤|α| + |β||x| ≤ K1 + K2(1 + x2) | log(1 + exp(α + βx))| ≤ 1 + K1 + K2(1 + x2) Let d(x, r) = 12 log(2π) + 12 max(| log(K4)|, | log(K5)|) + x2 2K4 + K3 K4 (1 + x2) + K23 2K4 + K1 + K2(1 + x2) + 1 + K1 + K2(1 + x2) Now, Eθ0 [X2] = µ20 + σ20 < ∞. This implies that Eθ0 [d(X, R)] < ∞. For condition iv), we have to show that p(x, r; θ) is
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数理统计》课程教学资源(参考资料)Large sample properties of MLE 03.pdf
- 《数理统计》课程教学资源(参考资料)Large sample properties of MLE 02.pdf
- 《数理统计》课程教学资源(参考资料)Large sample properties of MLE 01.pdf
- 《数理统计》课程教学资源(参考资料)An Inconsistent maximum likelihood estimate.pdf
- 《数理统计》课程教学资源(参考资料)Maximum Likelihood - An Introduction.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第五讲 点估计方法(二)极大似然估计方法.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第四讲 点估计方法(一)矩估计方法.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第三讲 指数族与充分完备统计量.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第二讲 统计量的分布(抽样分布).pdf
- 《数理统计》课程教学资源(参考资料)Hoeffding's Indequality 证明中的一个不等式的证明 complementary.pdf
- 《数理统计》课程教学资源(参考资料)Glivenko-Cantelli 定理的证明.pdf
- 中国科学技术大学:《数理统计》课程教学资源(PPT课件讲稿)统计学——统计数据的描述.ppt
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第一讲 总体与样本 What Statistics can do(主讲:张伟平).ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第六章 方差分析(二)第二节 单因素试验资料的方差分析、第三节 两因素试验资料的方差分析.ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第六章 方差分析(三)第四节 方差分析的数学模型与期望均方、第五节 数据转换.ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第六章 方差分析 Analysis of Variance(一)第一节 方差分析的基本原理与步骤.ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第七章 次数资料分析——X2检验.ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第四章 常用概率分布.ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第五章 假设检验(二).ppt
- 佛山科学技术学院:《生物统计附试验设计》课程电子教案(PPT课件讲稿)第五章 假设检验(一)均数差异显著性检验——t检验.ppt
- 《数理统计》课程教学资源(参考资料)Large sample properties of MLE 05.pdf
- 《数理统计》课程教学资源(参考资料)THE MM, ME, ML, EL, EF AND GMM APPROACHES TO ESTIMATION - A SYNTHESIS.pdf
- 《数理统计》课程教学资源(参考资料)Another scratch proof of consistency and asymptotical normal of MLE.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第六讲 点估计方法(三)一致最小方差无偏估计.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第七讲 区间估计(一)置信区间.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第八讲 区间估计(二)容忍区间.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第九讲 参数假设检验(一).pdf
- 《数理统计》课程教学资源(参考资料)How do we do hypothesis testing.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十讲 参数假设检验(二).pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十一讲 参数假设检验(三).pdf
- 《数理统计》课程教学资源(参考资料)Likelihood Ratio, Wald, and(Rao)Score Tests.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十二讲 非参数检验(一).pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十二讲 非参数检验(二).pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十三讲 Bayes统计初步(Bayes方法和统计决策理论).pdf
- 《数理统计》课程教学资源(参考资料)THE FORMAL DEFINITION OF REFERENCE PRIORS, ANNALS, 2009.pdf
- 《数理统计》课程教学资源(参考资料)Bayes Factor - What They Are and What They Are Not.pdf
- 中国科学技术大学:《数理统计》课程教学资源(课件讲义)第十四讲 回归分析(线性回归模型).pdf
- 中国科学技术大学:《实用统计软件》课程课件讲义(统计计算与软件)第一讲 R语言基础(一).pdf
- 《实用统计软件》课程教学资源(阅读材料)R for beginner(中文第二版,共七章).pdf
- 中国科学技术大学:《实用统计软件》课程课件讲义(统计计算与软件)第二讲 R语言基础(二).pdf