西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 6 Gravitational Force and Gravitational Field

UNIVERSITY PHYSICS I CHAPTER 6 Gravitational force and Gravitational Field 86.1 The gravitational force 1. How did Newton deduce the gravitational force lay Every particle in the <Y Moon universe attracts every 中a other particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance between them The direction Earth of the force is along the line joining the particles
1 1. How did Newton deduce the gravitational force law Every particle in the universe attracts every other particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance between them.The direction of the force is along the line joining the particles. §6.1 The gravitational force

86.1 The gravitational force 2. Newtons law of universal gravitation ① The vector force F12=-G ,m , m2 I Gravitational force is always attractive force FE- FES FE ② The principle of linear superposition 86.1 The gravitational force ③ The value of g G is a fundamental constant of nature Quartz fiber Determined by experiment(Henry Cavendish): Mirror G≈667×101N.m2/kg
2 2. Newton’s law of universal gravitation §6.1 The gravitational force 12 12 21 21 ˆ ˆ 2 1 2 21 2 1 2 12 r r m m F G r r m m F G = − = − r r 1 The vector force 2The principle of linear superposition Gravitational force is always attractive force. F12 r F21 F12 r r = − 12 rˆ 12 21 r =r 21 rˆ §6.1 The gravitational force 3 The value of G G is a fundamental constant of nature. Determined by experiment(Henry Cavendish): 11 2 2 ≈ 6.67×10 N⋅m /kg − G

86.1 The gravitational force @Gravitational mass and inertial mass F(r)=-G Mm r m-gravitational mass F(r)=ma(r) nertial mass Free-fall body experiment G GM =a Al 86.1 The gravitational force m GM = f=m BIB Experimental result: a=a that means AG=BG=.=k=constant nt BI choose suitable unit, k=1, mg=m
3 §6.1 The gravitational force 4Gravitational mass and inertial mass r r Mm F(r) G ˆ 2 = − r m –gravitational mass F(r) m a(r) r r = ′ m ′--inertial mass A AI A F = m a 2 r m M F G AG A = 2 r GM m m a AI AG A = ⋅ Free-fall body experiment: §6.1 The gravitational force B BI B F = m a 0 2 r m M F G BG B = 2 r GM m m a BI BG B = ⋅ Experimental result: aA=aB that means = = = k = constant m m m m BI BG AI AG L choose suitable unit, k=1, mG=mI

86.1 The gravitational force The experimental results for proving mg=m, experimenter time (m, -mG)/m, Galilei 1610 < Newton 1680 <1x10- Eotvos 1890-1915 <3×10-9 Dicke 1964 <1x10 Braginsky 1971 <9×10-13 86.1 The gravitational force 5 Principle of equivalence Einstein's thin king experiment 1
4 The experimental results for proving mG=mI experimenter Galilei Newton Eotvos Dicke Braginsky time 1610 1680 1890-1915 1964 1971 m I mG m I ( − ) / 3 2 10 − < × 3 1 10 − < × 9 3 10 − < × 11 1 10 − < × 13 9 10 − < × §6.1 The gravitational force §6.1 The gravitational force 5Principle of equivalence Einstein’s thinking experiment 1:

86.1 The gravitational force Einstein's thinking experiment 2 Inertial force and gravitational force are equivalent. No experiments can distinguish a physical system uniformly accelerating in the absence of gravity and a physical system at rest, subject to a uniform gravitational force. 86.1 The gravitational force Experiment: A person weighs a fish on a spring scale attached to the ceiling of an elevator, as shown in Figure Show that if the elevator accelerates, the spring scale reads a weight different from the true weight of the fish OIf the elevator accelerates with an acceleration a relative to an inertial frame outside the elevator: ∑F=T-mg=ma T mg t ma >0, T>mg; a<0, T<mg
5 Einstein’s thinking experiment 2: Inertial force and gravitational force are equivalent. No experiments can distinguish a physical system uniformly accelerating in the absence of gravity and a physical system at rest, subject to a uniform gravitational force. §6.1 The gravitational force Experiment: A person weighs a fish on a spring scale attached to the ceiling of an elevator, as shown in Figure. Show that if the elevator accelerates, the spring scale reads a weight different from the true weight of the fish. a r ①If the elevator accelerates with an acceleration a relative to an inertial frame outside the elevator: T mg ma Fy T mg ma = + ∑ = − = T r mg r a > 0, T > mg; a < 0, T < mg §6.1 The gravitational force

86.1 The gravitational force relative to the elevator ∑F,=T-mg-ma=0 T=mg+ma @If the cable breaks, a n T=0 The fish is weightless 86.2 Gravitational force of a uniform sphere on a particle 1. Shell theorem #1 A uniformly dense spherical shell attracts an external particle as if all the mass of the shell were concentrated at its center 2. Shell theorem #2 a uniformly dense spherical shell exerts no gravitational force on a particle located anywhere inside it 6
6 ③If the cable breaks, a= -g ②relative to the elevator T mg ma F T mg ma y = + ∑ = − − = 0 a r T r mg r ma r T = 0 The fish is weightless. §6.1 The gravitational force §6.2 Gravitational force of a uniform sphere on a particle 1. Shell theorem #1 A uniformly dense spherical shell attracts an external particle as if all the mass of the shell were concentrated at its center. 2. Shell theorem #2 A uniformly dense spherical shell exerts no gravitational force on a particle located anywhere inside it

86.2 Gravitational force of a uniform sphere on a particle 3. Proof of the shell theorems The axial component of the force dF=g mdmA cos al dF=dF4+dFB+… mdM =G-cosa dM=(dm4+dmg+…) dM=? 86.2 Gravitational force of a uniform sphere on a particle dM=2rRsin 8Rd8..p=2xptR sin d8 r-Rcos 8 cos a r+R Rcos e sin 0de dx rR The force exerted by the circular ring dm on m: dPs rGtpmR2-P2 +1)dx
7 §6.2 Gravitational force of a uniform sphere on a particle 3. Proof of the shell theorems cosα d d 2 x m m F G A A = The axial component of the force: d (d d ) cos d d d d 2 L L = + + = = + + A B A B M m m x m M G F F F α dM = ? §6.2 Gravitational force of a uniform sphere on a particle d 2π sinθ dθ ρ 2πρ sinθdθ 2 M = R ⋅ R ⋅ t ⋅ = tR x rR x r r R x R x r R sin d d 2 cos cos cos 2 2 2 = + − = − = θ θ θ θ α x x r R r Gt mR dF ( 1)d 2 2 2 2 + − = π ρ The force exerted by the circular ring dM on m:

86.2 Gravitational force of a uniform sphere on a particle The total force on m due to the entire shell R 2 f=dF nGtpmR rr+R +1)dx mM F nGtpmR (4R)=G Inside the shella F=dF nGtpmR R +1)dx 0 86.2 Gravitational force of a uniform sphere on a particle Exercise 1: Find the gravitational force between The small ball of mass m, and the thin staff of m and length l Solutio mdm dm dF=g dm= adr=-dr L F=[dF=( Gmm可:=cm L l dd+l M117 F=G d+L 8
8 §6.2 Gravitational force of a uniform sphere on a particle The total force on m due to the entire shell: ∫ ∫ + − + − = = r R r R x x r R r Gt mR F dF ( 1)d 2 2 2 2 π ρ 2 2 (4 ) r mM R G r Gt mR F = = π ρ Inside the shell: 0 ( 1)d d 2 2 2 2 = + − = = ∫ ∫ + − r R R r x x r R r Gt mR F F π ρ §6.2 Gravitational force of a uniform sphere on a particle Exercise 1: Find the gravitational force between The small ball of mass m1 and the thin staff of mass m and length L. Solution: r L m m r i r m m F G d d d ˆ d d 2 1 = = = λ r i L d d L m m i G r r L m m F F G d L d ˆ) 1 1 ( ˆ d d 1 2 1 + = = = − ∫ ∫ r r + i L d d L m m F G ˆ) 1 1 ( 1 + = − r F x r d

86.2 Gravitational force of a uniform sphere on a particle Exercise 2: a particle of mass m is placed on the axis of a circular ring of mass M and radius Find the gravitational force exerted by the ring on the particle located a distance from the center of the ring. R n 86.2 Gravitational force of a uniform sphere on a particle Solution: dm dF=dF cosa M dF dF mdM dF=g Gm dM F dF cos a (R2+x2)√R2+x MmX (R2+x 3/2 F=-F i
9 §6.2 Gravitational force of a uniform sphere on a particle Exercise 2: a particle of mass m is placed on the axis of a circular ring of mass M and radius R. Find the gravitational force exerted by the ring on the particle located a distance from the center of the ring. O x m M R §6.2 Gravitational force of a uniform sphere on a particle Solution: x O M m R F r d α dM dFx = dF cosα 2 d d r m M F = G 2 2 3 2 0 2 2 2 2 ( ) ( ) d d cos R x GmMx R x x R x Gm M F F M x + = + + = = ∫ ∫ α F F i x ˆ = − r F r d

86.2 Gravitational force of a uniform sphere on a particle Exercise 3: P240-241 (a)a point mass m located outside the sphere; (b)a point mass m located within the volume enclosed by the sphere itself. Solution: (a) F_GmM M 4m3/3 (b) 4丌R/3R gm(rM/R) GmM 86.2 Gravitational force of a uniform sphere on a particle Exercise 4: A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of the lead sphere and passes through its center. The mass of the sphere before hollowing was m. what is the attracting force between a small sphere of mass m and the hollowing sphere. 10
10 Exercise 3: P240~241 Solution: (a) A point mass m located outside the sphere; (b) A point mass m located within the volume enclosed by the sphere itself. (a) 2 r GmM F = (b) r R GmM r Gm r M R F 3 2 3 3 ( ) = = 3 3 3 3 4 3 4 3 R r R r = π π r M r M §6.2 Gravitational force of a uniform sphere on a particle R r F F ∝ r 2 F∝1/r 2 R GmM §6.2 Gravitational force of a uniform sphere on a particle Exercise 4: A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of the lead sphere and passes through its center. The mass of the sphere before hollowing was M. What is the attracting force between a small sphere of mass m and the hollowing sphere. d R m
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 上海科学技术出版社:《费曼物理学讲义》(第三卷)PDF电子书.pdf
- 《光学薄膜基础知识》讲义.ppt
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——奥斯特实验.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——毕奥-萨筏尔定律.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——安培环路定理.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——磁场的“高斯定理”.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——磁力.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 讨论课.ppt
- 北京大学:《电磁学》课程教学资源(习题讲义)练习题答案.doc
- 北京大学:《电磁学》课程教学资源(习题讲义)讨论题.doc
- 北京大学:《电磁学》课程教学资源(习题讲义)讨论题答案.doc
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(教学要求).ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(4.1)刚体的定轴转动.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(4.2)力矩转动定律.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)绪论.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(教学要求).ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.1)质点运动的描述.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.2)加速度为恒矢量时的质点运动.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.3)圆周运动.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.4)相对运动.ppt