康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy

Physics 121, Sections 9, 10, 11, and 12 Lecture 18 Today's Topics Homework 7: due Friday Nov 4@ 6: 00 PM Chap7:#3,11,20,21,25,27,30,40, 46,47,52,and68 Chapter 8 Rotation Moment of inertia Rolling motion Physics 121: Lecture 18, Pg 1
Physics 121: Lecture 18, Pg 1 Physics 121, Sections 9, 10, 11, and 12 Lecture 18 Today’s Topics: Homework 7: due Friday Nov. 4 @ 6:00 PM. Chap. 7: # 3, 11, 20, 21, 25, 27, 30, 40, 46, 47, 52, and 68. Chapter 8: Rotation Moment of inertia Rolling motion

Summary (with comparison to 1-D kinematics) Angular Linear a= constant a= constant V= Vo+at 0=00+Oot+ ot+at And for a point at a distance R from the rotation axis X=RO V=OR a= ar Physics 121: Lecture 18, Pg 2
Physics 121: Lecture 18, Pg 2 Summary (with comparison to 1-D kinematics) Angular Linear = constant = 0 +0 + 1 2 2 t t a = constant v = v + at 0 x = x + v t + at 0 0 1 2 2 And for a point at a distance R from the rotation axis: x = R v = R a = R

Rotation Kinetic Energy The kinetic energy of a rotating system looks similar to that of a point particle Point particle Rotating System KE=-mv KE=-I v is"linear velocity o is angular velocity m is the mass I is the moment of inertia about the rotation axis Physics 121: Lecture 18, Pg 3
Physics 121: Lecture 18, Pg 3 Rotation & Kinetic Energy... The kinetic energy of a rotating system looks similar to that of a point particle: Point Particle Rotating System 2 I 2 1 KE = I = m r i i i 2 2 2 1 KE = mv v is “linear” velocity m is the mass. is angular velocity I is the moment of inertia about the rotation axis

Moment of inertia So KE=-Io where I Notice that the moment of inertia /depends on the distribution of mass in the system The further the mass is from the rotation axis, the bigger the moment of inertia For a given object, the moment of inertia will depend on where we choose the rotation axis(unlike the center of mass We will see that in rotational dynamics, the moment of inertia appears in the same way that mass m does when we study linear dynamics Physics 121: Lecture 18, Pg 4
Physics 121: Lecture 18, Pg 4 Moment of Inertia Notice that the moment of inertia I depends on the distribution of mass in the system. The further the mass is from the rotation axis, the bigger the moment of inertia. For a given object, the moment of inertia will depend on where we choose the rotation axis (unlike the center of mass). We will see that in rotational dynamics, the moment of inertia I appears in the same way that mass m does when we study linear dynamics ! 2 I 2 1 KE = I = m r i i i 2 So where

Calculating Moment of Inertia We have shown that for N discrete point masses distributed about a fixed axis the moment of inertia is Where ris the distance from the mass to the axis of rotation Example: Calculate the moment of inertia of four point masses (m)on the corners of a square whose sides have length L, about a perpendicular axis through the center of the square m m m m Physics 121: Lecture 18, Pg 5
Physics 121: Lecture 18, Pg 5 Calculating Moment of Inertia We have shown that for N discrete point masses distributed about a fixed axis, the moment of inertia is: I = = m r i i i N 2 1 where r is the distance from the mass to the axis of rotation. Example: Calculate the moment of inertia of four point masses (m) on the corners of a square whose sides have length L, about a perpendicular axis through the center of the square: m m m m L

Calculating Moment of Inertia The squared distance from each point mass to the axis is Using the Pythagorean Theorem s0/=m=m2+m+m2+m=4m 1= 2mL2 L2 m● m m m Physics 121: Lecture 18, Pg 6
Physics 121: Lecture 18, Pg 6 Calculating Moment of Inertia... The squared distance from each point mass to the axis is: m m m m L r L/2 2 L 2 L r 2 2 2 2 = = 2 L 4m 2 L m 2 L m 2 L m 2 L I m r m 2 2 2 2 2 N i 1 2 = i i = + + + = = so I = 2mL2 Using the Pythagorean Theorem

Calculating Moment of Inertia Now calculate /for the same object about an axis through the center, parallel to the plane(as shown) =∑mr=m+m+m+m==4m I= ml2 m m m● Physics 121: Lecture 18, Pg 7
Physics 121: Lecture 18, Pg 7 Calculating Moment of Inertia... Now calculate I for the same object about an axis through the center, parallel to the plane (as shown): m m m m L r 4 L 4m 4 L m 4 L m 4 L m 4 L I m r m 2 2 2 2 2 N i 1 2 = i i = + + + = = I = mL2

Calculating Moment of Inertia Finally, calculate / for the same object about an axis along one side(as shown) =∑mr2=ml2+m2+m02+m0 1= 2mL2 m m Physics 121: Lecture 18, Pg 8
Physics 121: Lecture 18, Pg 8 Calculating Moment of Inertia... Finally, calculate I for the same object about an axis along one side (as shown): m m m m L r 2 2 2 2 N i 1 2 I = mi r i = mL + mL + m0 + m0 = I = 2mL2

Calculating Moment of Inertia. For a single object, I clearly depends on the rotation axis 1= 2mL2 ml 1= 2mL2 m m● m Physics 121: Lecture 18, Pg 9
Physics 121: Lecture 18, Pg 9 Calculating Moment of Inertia... For a single object, I clearly depends on the rotation axis !! L I = 2mL2 I = mL2 m m m m I = 2mL2

Lecture 18. Act 1 Moment of Inertia a triangular shape is made from identical balls and identical rigid, massless rods as shown the moment of inertia about the a, b, and c axes is la, Ib, and Ic respectively Which of the following is correct (a)12>1b>1c (b)la>Ic>Ib (c)b>a>Ic abc Physics 121: Lecture 18, Pg 10
Physics 121: Lecture 18, Pg 10 Lecture 18, Act 1 Moment of Inertia A triangular shape is made from identical balls and identical rigid, massless rods as shown. The moment of inertia about the a, b, and c axes is Ia , Ib , and Ic respectively. Which of the following is correct: (a) Ia > Ib > Ic (b) Ia > Ic > Ib (c) Ib > Ia > Ic a b c
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 15 A projectile of mass m is launched straight.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 14 Work Kinetic-Energy Theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 13 Work-kinetic energy theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 12 Review session Friday.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 11 Centripetal Acceleration.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 10 displacement.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 8 An Example.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 7 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 6 Homework.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 5 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 4 Average Velocity.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 3 Lectures available on the web.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 2 Lectures available.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 1 Announcements.ppt
- 《大学物理》(习题与答案) 作业答案9-1~~9-24.pdf
- 《大学物理》(习题与答案) 作业答案8-1~~8-14.pdf
- 《大学物理》(习题与答案) 作业答案1-1~~1-13.pdf
- 《大学物理》(习题与答案) 作业答案0-1~~0-4.pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 6 Gravitational Force and Gravitational Field.pdf