西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions

UNIVERSITY PHYSICS I CHAPTER 4 Kinematics ii Motion in two and Three Dimensions 84.1 The position velocity, and acceleration vectors in two dimensions 1. The position vector and displacement Let the plane of the two-dimensional motion be the x-y plane of a Cartesian coordinate system. r(t=x(t)i+y(t) 本s r(t+4-r(t) =|x(t+∠r)-x(t)i +[y(t+4)-y(t)lj
1 1. The position vector and displacement Let the plane of the two –dimensional motion be the x-y plane of a Cartesian coordinate system. y t t y t j x t t x t i r t t r t r r r r t x t i y t j f i ˆ [ ( ) ( )] ˆ [ ( ) ( )] ( ) ( ) ˆ ( ) ˆ ( ) ( ) + + − = + − = + − = − = + ∆ ∆ ∆ ∆ r r r r r r x y O ∆s §4.1 The position, velocity, and acceleration vectors in two dimensions

4.1 The position, velocity, and acceleration vectors in two dimensions 2. The path(trajectory) of a particle x=x(t) y=y(t) Eliminating y=y(x) Example 1: r(t)=A cos ati+ B sin atj x=x(t=Acos @t V= y(t)=b sin at 十 A2B 84.1 The position velocity, and acceleration vectors in two dimensions 3. Speed and velocity vector a Average speed and instantaneous speed As ave ∠t as d v= m →0 4t dt b Average velocity and instantaneous velocity m布r(t+A)-F(t) Notes≠ ∠t Ive
2 2. The path (trajectory) of a particle ( ) ( ) y y t x x t = = Eliminating t y = y(x) Example 1: 1 ( ) sin ( ) cos ˆ sin ˆ ( ) cos 2 2 2 2 + = = = = = = + B y A x y y t B t x x t A t r t A ti B tj ω ω ω ω r §4.1 The position, velocity, and acceleration vectors in two dimensions §4.1 The position, velocity, and acceleration vectors in two dimensions 3. Speed and velocity vector a. Average speed and instantaneous speed t s t s v t s v t d d lim 0s ave = = = → ∆ ∆ ∆ ∆ ∆ b. Average velocity and instantaneous velocity t r t t r t t r v ∆ ∆ ∆ ∆ ( ) ( ) ave r r r r + − = = x y O ∆s Note: ave ave v v r ≠

84.1 The position, velocity and acceleration vectors in two dimensions v(t=lim r(+△)-r(t)dr( M→0s c. The components of the velocity in Cartesian coordinate system dr(t) dx(t):, dj A v(t) =v,(t)i+v,(t) dt d dt Magnitude:y=/(6)=[v2(0)+22(0v ds+ dt Direction: tangent to the path followed by the particle; or 0= tan-y The angle between v and x-axis 84.1 The position velocity, and acceleration vectors in two dimensions v(t) rajectory t+△n v(t+At v(t+At) 4. Acceleration vector Average acceleration Av(0 v(t+4r)-v( t
3 t r t t r t t r t v t t d ( ) ( ) d ( ) ( ) lim 0s r r r r = ∆ + ∆ − = ∆ → c. The components of the velocity in Cartesian coordinate system j v t i v t j t y t i t x t t r t v t x y ˆ ( ) ˆ ( ) ˆ d d ( ) d d ( ) d d ( ) ( ) = = + = + r r r §4.1 The position, velocity, and acceleration vectors in two dimensions Magnitude: t s v v t v t v t x y d d ( ) [ ( ) ( )] 2 2 1 2 = = + = r Direction: tangent to the path followed by the particle; or x y v v 1 tan− θ = The angle between v and x − axis r §4.1 The position, velocity, and acceleration vectors in two dimensions 4. Acceleration vector a. Average acceleration v(t) r v(t + ∆t) r v(t) r ∆ t v t t v t t v t a ∆ ∆ ∆ ∆ ( ) ( ) ( ) ave r r r r + − = = x y O v(t) r v(t + ∆t) r

84.1 The position, velocity and acceleration vectors in two dimensions b. Instantaneous acceleration (t)=li Av(t dv(t a→0st dt 4v() dv,()a dv, (t 十 dt v(t+4) =a(t)i+a,(t)j Magnitude: a=a(D)=[a2()+a2(0/2 , Direction: 6=tan The angle between a and x-axis 84.1 The position, velocity, and acceleration vectors in two dimensions C. The direction of acceleration: 4v=v-v vI> B B < g
4 §4.1 The position, velocity, and acceleration vectors in two dimensions a t i a t j j t v t i t v t t v t t v t a t x y x y t ˆ ( ) ˆ ( ) ˆ d d ( ) ˆ d d ( ) d ( ) d ( ) ( ) lim 0s = + = + = = → r r r ∆ ∆ ∆ b. Instantaneous acceleration Magnitude: 2 2 1 2 a a(t) [a (t) a (t)] x y = = + r Direction: x y a a1 tan− θ = The angle between a and x − axis r v(t) r v(t + ∆t) r v(t) r ∆ c. The direction of acceleration: B A v v v r v r ∆ = − B A v v r r > A v r v r ∆ a α r g r v r A v r B v r B A v v r r < B v r v r ∆ a r g r α v r A v r B A v v r r = B v r v r ∆ a r α v r a r A v r B v r §4.1 The position, velocity, and acceleration vectors in two dimensions

84.1 The position, velocity and acceleration vectors in two dimensions Example 2: If we know the position vector of a particle F=2ni+(2-t2 Fined the trajectory of the particle; the position vector at fs and ts the velocity and the acceleration of the particle at instant t=2s. Solution: (itrajetory r= 2t y=2 Eliminate t, we can get y=2-te 4-parabola (2) position vector: t=0s,x=0p=2 t=2s,x=4 r′=4i-2j 84.1 The position, velocity, and acceleration vectors in two dimensions J 2 Q r’=4i-2j The magnitude: r=r=2(m) F=√42+(-2)2=447m) The direction: The angle between r and x-axis 8=arcfe2 90 The angle between rand x-axis o'=arctg-=-26 32
5 Solution: (1)trajetory ⎩ ⎨ ⎧ = − = 2 2 2 y t x t (2) position vector: t = 0s,x = 0 y= 2 t = 2s,x = 4 y = -2 r i j r j r r r r r 4 2 2 ′ = − = Example 2: If we know the position vector of a particle r ti t j r r r 2 (2 ) 2 = + − (SI) Fined the trajectory of the particle; the position vector at t=s and t=2s; the velocity and the acceleration of the particle at instant t=2s. 4 2 2 x Eliminate t, we can get y = − —parabola §4.1 The position, velocity, and acceleration vectors in two dimensions The magnitude: 4 ( 2) 4.47(m) 2(m) 2 2 ′ = ′ = + − = = = r r r r r r o y x Q r r r′ r 2 P -2 4 θ′ θ 4 2 2 x y = − r i j r j r r r r r 4 2 2 ′ = − = r r The direction: 26 32 4 2 arctg 90 0 2 arctg = − ′ − ′ = = = o o θ The angle between and x-axis θ The angle between and r ′ x-axis r §4.1 The position, velocity, and acceleration vectors in two dimensions

84.1 The position, velocity and acceleration vectors in two dimensions ()The velocity: F=2t i+2-t dr v =2i-2t j Magnitude: V =2 v,=-2t V"x+v=2√ +t t=2n2=2√5=4.47ms The angle between velocity and x-axis 4 a= tan tan 2 84.1 The position, velocity, and acceleration vectors in two dimensions v=,=2i-2tj dνd2r T he magnitu 2 Direction of the acceleration
6 (3)The velocity: 2 4 tan tan 1 1 − = = − − x y v v α The angle between velocity and x-axis: ( ) -1 2 2 2 2 2 2 2 5 4.47 m s 2 1 2 2 2 2 d d 2 2 = = = ⋅ = + = + = = − = = − = + − t v v v v t v v t i t j t r v r t i t j x y x y r r r r r r r Magnitude: §4.1 The position, velocity, and acceleration vectors in two dimensions ( ) j t r t v a i t j t r v r t i t j ˆ 2 d d d d ˆ 2 ˆ 2 d d ˆ 2 ˆ 2 2 2 2 = = = − = = − = + − r r r r r r (3)The acceleration: Direction of the acceleration: The magnitude: a = a = 2 r j ˆ − §4.1 The position, velocity, and acceleration vectors in two dimensions

84.1 The position, velocity and acceleration vectors in two dimensions Exercise: The position of a small bumper car in an amusement park ride is described as a function of time by the coordinates x=0.2t2+5.0t+0.5 (SD) y=-1.0r+10.0t+20(S1) Find (a) the position vector at t1.0 s and t3.0 s (b) the displacement vector between these tim e (c)average velocity over the period from 1.0 s to 3.0s, and the velocity at t=3.0 s. (d the magnitude and direction of the acceleration at tl0s and t3.0 s 84.1 The position, velocity, and acceleration vectors in two dimensions 5. Perpendicular motions are independent of each other We can analyze the motion along each coordinate axis separately Experimental result
7 Exercise: The position of a small bumper car in an amusement park ride is described as a function of time by the coordinates 1.0 10.0 2.0 (SI) 0.2 5.0 0.5 (SI) 2 2 = − + + = + + y t t x t t Find (a) the position vector at t=1.0 s and t=3.0 s. (b) the displacement vector between these time. (c) average velocity over the period from 1.0 s to 3.0 s, and the velocity at t=3.0 s. (d) the magnitude and direction of the acceleration at t=1.0 s and t=3.0 s. §4.1 The position, velocity, and acceleration vectors in two dimensions 5. Perpendicular motions are independent of each other §4.1 The position, velocity, and acceleration vectors in two dimensions We can analyze the motion along each coordinate axis separately. Experimental result

84.3 motion in three dimension 84.2 Two dimensional motion with a constant acceleration (self-study) 84.3 motion in three dimension r(t=x(t)i+y(t)j+z(t k △r(r)=△x(t)i+△y()j+△()k △ △F △ν ave △t ave △t ave △ d dr dy d dt dt 84. 4 relative velocity addition and accelerations 1. Reference frame A coordinate system with a set of synchronized clocks, all ticking at the same rate, is called reference system Coordinate +synchronized clocks Different choices for the reference frame lead to different description of motion, but the underlying physics is nonetheless the same 8
8 §4.2 Two dimensional motion with a constant acceleration (self-study) §4.3 motion in three dimension §4.3 motion in three dimension 2 2 ave ave ave d d d d , d d , d d , , ˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( ) t r t v a t r v t s v t v a t r v t s v r t x t i y t j z t k r t x t i y t j z t k r r r r r r r r r r r = = = = ∆ ∆ = ∆ ∆ = ∆ ∆ = ∆ = ∆ + ∆ + ∆ = + + §4.4 relative velocity addition and accelerations 1. Reference frame A coordinate system with a set of synchronized clocks, all ticking at the same rate, is called reference system. Different choices for the reference frame lead to different description of motion, but the underlying physics is nonetheless the same. Coordinate +synchronized clocks

84. 4 relative velocity addition and accelerations 2. relative velocity addition and accelerations r=R+r dr dr dr dtdt dt Vpo+voo R Po-ap0ta if voo=constant, then a 84. 4 relative velocity addition and accelerations 3. Some topics of discussion OIs there really inertial reference frame? @Are space and time absolute or not? @The measurement of the time interva @The measurement of the space distance
9 §4.4 relative velocity addition and accelerations 2. relative velocity addition and accelerations r = R+ r′ r r PO PO O O PO PO O O a a a v v v ′ ′ ′ ′ = + = + r r r r r r t r t R t r d d d d d d ′ = + r r r PO PO O O a a v ′ ′ = = r r r then if constant, O r r r′ r R r P O′ §4.4 relative velocity addition and accelerations 3. Some topics of discussion 1Is there really inertial reference frame? 2Are space and time absolute or not? 3The measurement of the time interval; 4The measurement of the space distance

84. 4 relative velocity addition and accelerations Exercise 1 a train travels due south at 28 m/s(relative to the ground in a rain that is blown to the south by the wind. The path of each raindrop makes an angle of 64 with the vertical, as measured by an observer stationary on the earth. An observer on the train however. see perfectly vertical tracks of rain on the windowpane. Determine the speed of the rain drops relative to the ground 84. 4 relative velocity addition and accelerations Solution: =v+卩 g From the problem, we have vsin64°=p,=28m/s 28 33.3m/s sin64°0.84
10 Exercise 1: A train travels due south at 28 m/s(relative to the ground) in a rain that is blown to the south by the wind. The path of each raindrop makes an angle of 64°with the vertical, as measured by an observer stationary on the earth. An observer on the train, however, see perfectly vertical tracks of rain on the windowpane. Determine the speed of the rain drops relative to the ground. §4.4 relative velocity addition and accelerations Solution: rt v r tg v r rg v r tg v r o 64 o 64 rg v r rt v r From the problem, we have sin64 = = 28m/s rg tg v v o 33.3m/s 0.84 28 sin64 = = = o tg rg v v §4.4 relative velocity addition and accelerations rg rt tg v v v r r r = +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 6 Gravitational Force and Gravitational Field.pdf
- 上海科学技术出版社:《费曼物理学讲义》(第三卷)PDF电子书.pdf
- 《光学薄膜基础知识》讲义.ppt
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——奥斯特实验.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——毕奥-萨筏尔定律.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——安培环路定理.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——磁场的“高斯定理”.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——磁力.pps
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 讨论课.ppt
- 北京大学:《电磁学》课程教学资源(习题讲义)练习题答案.doc
- 北京大学:《电磁学》课程教学资源(习题讲义)讨论题.doc
- 北京大学:《电磁学》课程教学资源(习题讲义)讨论题答案.doc
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(教学要求).ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(4.1)刚体的定轴转动.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第四章 刚体的转动(4.2)力矩转动定律.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)绪论.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(教学要求).ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.1)质点运动的描述.ppt
- 成都理工大学:《大学物理》课程教学资源(PPT课件)第一章 质点运动学(1.2)加速度为恒矢量时的质点运动.ppt