康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda

Physics 121: Lecture 19 Today's Agenda Announcements Homework 8: due Friday Nov 11@6: 00 PM Chap.7:#7,22,28,33,35,44,45,50,54,61,and65 Today's topics Kinetic energy rotation Rolling motion Angular momentum Fluid and solids Physics 121: Lecture 19, Pg
Physics 121: Lecture 19, Pg 1 Physics 121: Lecture 19 Today’s Agenda Announcements Homework 8: due Friday Nov. 11 @ 6:00 PM. Chap. 7: # 7, 22, 28, 33, 35, 44, 45, 50, 54, 61, and 65. Today’s topics Kinetic energy & rotation Rolling motion Angular momentum Fluid and solids

Summary (with comparison to 1-D kinematics) Angular Linear a= constant a= constant V=Vo +at 0=00+Oot+ al And for a point at a distance R from the rotation axis X=RO V=OR a=ar Physics 121: Lecture 19, Pg 2
Physics 121: Lecture 19, Pg 2 Summary (with comparison to 1-D kinematics) Angular Linear = constant = 0 +0 + 1 2 2 t t a = constant v = v + at 0 x = x + v t + at 0 0 1 2 2 And for a point at a distance R from the rotation axis: x = R v = R a = R

Rotation Kinetic Energy ■■■ The kinetic energy of a rotating system looks similar to that of a point particle Point Particle Rotating System v is"linear velocity o is angular velocity m is the mass I is the moment of inertia about the rotation axis mi ri Physics 121: Lecture 19, Pg 3
Physics 121: Lecture 19, Pg 3 Rotation & Kinetic Energy... The kinetic energy of a rotating system looks similar to that of a point particle: Point Particle Rotating System I = m r i i i 2 v is “linear” velocity m is the mass. is angular velocity I is the moment of inertia about the rotation axis

Rolling Motion Now consider a cylinder rolling at a constant speed CM CM The cylinder is rotating about CM and its CM is moving at constant speed (VcM). Thus its total kinetic energy is given by OT 2 CMO+o NANCM Physics 121: Lecture 19, Pg 4
Physics 121: Lecture 19, Pg 4 Rolling Motion Now consider a cylinder rolling at a constant speed. KTOT = CM + MVCM 1 2 1 2 2 2 I VCM CM The cylinder is rotating about CM and its CM is moving at constant speed (vCM). Thus its total kinetic energy is given by :

Rolling Motion Consider again a cylinder rolling at a constant speed CM CM At any instant the cylinder is rotating about point P. Its kinetic energy is given by its rotational energy about that point TOt 1/2 P Physics 121: Lecture 19, Pg 5
Physics 121: Lecture 19, Pg 5 Rolling Motion Consider again a cylinder rolling at a constant speed. VCM P Q CM At any instant the cylinder is rotating about point P. Its kinetic energy is given by its rotational energy about that point. KTOT = 1/2 IP 2

Rolling Motion We can find Ip using the parallel axis theorem CM CM Ip=ICM+ MR2 Ko=1/2(cM+MR2)2 Kor=12lcM02+12M(R202)=1/2lcM02+1/2MvM2! TOT CM0+M∥ Physics 121: Lecture 19, Pg 6
Physics 121: Lecture 19, Pg 6 Rolling Motion We can find IP using the parallel axis theorem KTOT = CM + MVCM 1 2 1 2 2 2 I VCM P Q CM IP = ICM + MR2 KTOT = 1/2 (ICM + MR2 ) 2 KTOT = 1/2 ICM 2 + 1/2 M (R22 ) = 1/2 ICM 2 + 1/2 M vCM 2 !

Rolling Motion Cylinders of different /rolling down an inclined plane 0 △K=-AU=Mgh R 0 M K=O TOT CM +-M CM V=0 Physics 121: Lecture 19, Pg7
Physics 121: Lecture 19, Pg 7 Rolling Motion Cylinders of different I rolling down an inclined plane: h v = 0 = 0 K = 0 R K = - U = Mgh v = R M KTOT = CM + MVCM 1 2 1 2 2 2 I

Rolling If there is no slipping(due to friction 2V Where= OR In the lab reference frame In the cm reference frame Physics 121: Lecture 19, Pg 8
Physics 121: Lecture 19, Pg 8 Rolling... If there is no slipping (due to friction): v 2v In the lab reference frame v In the CM reference frame v Where v = R

Rolling Kot =lIcmo2+lMvM use y= or and /=cMR2, hoop: C disk C=1/2 sphere: C=2/5 C etc So C+1Mv2= Mgh V=√2qh C+1 The rolling speed is always lower than in the case of simple Sliding since the kinetic energy is shared between CM motion and rotation Physics 121: Lecture 19, Pg 9
Physics 121: Lecture 19, Pg 9 Rolling... Use v= R and I = cMR2 . So: ( 1)Mv Mgh 2 1 2 + = 1 1 v 2gh + = The rolling speed is always lower than in the case of simple Sliding since the kinetic energy is shared between CM motion and rotation. hoop: c=1 disk: c=1/2 sphere: c=2/5 etc... c c c c KTOT = CM + MVCM 1 2 1 2 2 2 I

Example: Rolling Motion A cylinder is about to roll down an inclined plane. What is its speed at the bottom of the plane Ball has radius r 0 M Physics 121: Lecture 19, Pg 10
Physics 121: Lecture 19, Pg 10 Example : Rolling Motion A cylinder is about to roll down an inclined plane. What is its speed at the bottom of the plane ? M h M v ? Ball has radius R
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 15 A projectile of mass m is launched straight.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 14 Work Kinetic-Energy Theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 13 Work-kinetic energy theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 12 Review session Friday.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 11 Centripetal Acceleration.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 10 displacement.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 8 An Example.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 7 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 6 Homework.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 5 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 4 Average Velocity.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 3 Lectures available on the web.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 2 Lectures available.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 1 Announcements.ppt
- 《大学物理》(习题与答案) 作业答案9-1~~9-24.pdf
- 《大学物理》(习题与答案) 作业答案8-1~~8-14.pdf
- 《大学物理》(习题与答案) 作业答案1-1~~1-13.pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 6 Gravitational Force and Gravitational Field.pdf
- 上海科学技术出版社:《费曼物理学讲义》(第三卷)PDF电子书.pdf