康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements

Physics 121: Lecture 21 Today,'s Agenda Announcements Homework 8: due Friday Nov. 11@ 6: 00 PM Chap.8:#7,22,28,33,35,44,45,50,54,61,and65 Today' s topics Fluids in motion Bernoullis equation Viscous fluids Simple oscillations Pendulum Physics 121: Lecture 21, Pg
Physics 121: Lecture 21, Pg 1 Physics 121: Lecture 21 Today’s Agenda Announcements Homework 8: due Friday Nov. 11 @ 6:00 PM. Chap. 8: # 7, 22, 28, 33, 35, 44, 45, 50, 54, 61, and 65. Today’s topics Fluids in motion Bernouilli’s equation Viscous fluids Simple oscillations Pendulum

Review: Fluids at rest What parameters do we use to describe fluids? Density Bulk modulus B △p (-△V/V) Pressure F=pAn A For incompressible fiuids(B>>p) p=const p(Ay )=Po+pgAy (y is depth) Pascals Principle Any change in the pressure applied to an enclosed fluid is transmitted to every portion of the fluid and to the walls of the containing vessel Physics 121: Lecture 21, Pg 2
Physics 121: Lecture 21, Pg 2 Review: Fluids at Rest What parameters do we use to describe fluids? Density Bulk Modulus Pressure For incompressible fluids ( ) Pascal’s Principle: Any change in the pressure applied to an enclosed fluid is transmitted to every portion of the fluid and to the walls of the containing vessel. ( V /V) p B − = B p = const. p(y ) = p0 + gy (y is depth) F = pAn ˆ A n

Archimedes' Principle( W,(W2? The buoyant force is equal to the difference in the pressures times the area B=(p2-p1)A=pg(y2-y1)A FB= Pliquidg Vliquid=Liquid.g=Wliq Archimedes The buoyant force is equal to the weight of the liquid displaced y1 The buoyant force determines whether an object will sink or float How does this work? Physics 121: Lecture 21, Pg 3
Physics 121: Lecture 21, Pg 3 The buoyant force is equal to the difference in the pressures times the area. W1 W2? FB = (p2 − p1 ) A = g(y2 - y1 )A FB liquidgVliquid Mliquid g = Wliquid = = Archimedes: The buoyant force is equal to the weight of the liquid displaced. The buoyant force determines whether an object will sink or float. How does this work? y 1 y 2 A p 1 p 2 F 1 F 2 Archimedes’ Principle

Fluids in Motion Up to now we have described fluids in terms of their static properties density p pressure p To describe fluid motion, we need something that can describe flow velocity v There are different kinds of fiuid flow of varying complexity non-steady / steady compressible incompressible rotational irrotational VISCOUS idea Physics 121: Lecture 21, Pg
Physics 121: Lecture 21, Pg 4 Fluids in Motion Up to now we have described fluids in terms of their static properties: density pressure p To describe fluid motion, we need something that can describe flow: velocity v There are different kinds of fluid flow of varying complexity non-steady / steady compressible / incompressible rotational / irrotational viscous / ideal

Ideal fluids Fluid dynamics is very complicated in general (turbulence, vortices, etc.) Consider the simplest case first the Ideal Fluid no" -no flow resistance(no internal friction) incompressible -density constant in space and time Simplest situation: consider streamline A ideal fluid moving with steady flow-velocity at each point in A the flow is constant in time In this case, fluid moves on streamlines Physics 121: Lecture 21, Pg 5
Physics 121: Lecture 21, Pg 5 Simplest situation: consider ideal fluid moving with steady flow - velocity at each point in the flow is constant in time In this case, fluid moves on streamlines A1 A2 v1 v2 streamline Ideal Fluids Fluid dynamics is very complicated in general (turbulence, vortices, etc.) Consider the simplest case first: the Ideal Fluid no “viscosity” - no flow resistance (no internal friction) incompressible - density constant in space and time

Ideal fluids streamlines do not meet or cross velocity vector is tangent to streamline A streamline A volume of fluid follows a tube of flow bounded by streamlines Flow obeys continuity equation volume flow rate Q=Av is constant along flow tube A1V,=A2v2 follows from mass conservation if flow is compressible. Physics 121: Lecture 21, Pg 6
Physics 121: Lecture 21, Pg 6 Flow obeys continuity equation volume flow rate Q = A·v is constant along flow tube. follows from mass conservation if flow is incompressible. A1 A2 v1 v2 streamline A1v1 = A2v2 Ideal Fluids streamlines do not meet or cross velocity vector is tangent to streamline volume of fluid follows a tube of flow bounded by streamlines

Steady Flow of Ideal Fluids (actually laminar flow of real fluid) Physics 121: Lecture 21, Pg 7
Physics 121: Lecture 21, Pg 7 Steady Flow of Ideal Fluids (actually laminar flow of real fluid)

Lecture 21 Act 1 Continuity A housing contractor saves v1/2 some money by reducing the size of a pipe from1” diameter to 1/2 diameter at some point in your house 1)Assuming the water moving in the pipe is an ideal fluid, relative to its speed in the 1 diameter pipe how fast is the water going in the 1/2 pipe? a)2 V1 b)4 V1 c)1/2v1c)1/4v1 Physics 121: Lecture 21, Pg 8
Physics 121: Lecture 21, Pg 8 1) Assuming the water moving in the pipe is an ideal fluid, relative to its speed in the 1” diameter pipe, how fast is the water going in the 1/2” pipe? Lecture 21 Act 1 Continuity A housing contractor saves some money by reducing the size of a pipe from 1” diameter to 1/2” diameter at some point in your house. v1 v1/2 a) 2 v1 b) 4 v1 c) 1/2 v1 c) 1/4 v1

Conservation of Energy for Ideal fluid Recall the standard work-energy relation W=AK Apply the principle to a section of flowing fluid with volume 8V and mass Sm= psV(here W is work done on fluid W=W ravity Pressure y2 gravity=-om g(y2-y1) pavg(y2-y1) SV lese=p1y-P242∞2 (p1-p2)8v W=Ak=1,mvi,=pov(v2-v) Bernoulli Equation p,+pVi+pgy,=p2+2pv2+pgy2 Physics 121: Lecture 21, Pg 9
Physics 121: Lecture 21, Pg 9 Recall the standard work-energy relation Apply the principle to a section of flowing fluid with volume dV and mass dm = dV (here W is work done on fluid) ( p p ) V W p A x p A x 1 2 pressure 1 1 1 2 2 2 d d d = − = − Vg( y y ) W m g( y y ) 2 1 gravity 2 1 = − − = − − d d W K mv mv V(v v ) 2 1 2 2 2 2 1 2 1 2 1 2 2 1 = = d − d = d − 2 2 2 2 1 1 2 2 2 1 1 Bernoulli Equation p1 + v + gy = p + v + gy y 1 y 2 v 1 v 2 p 1 p 2 dV W =Wgravity +Wpressure W = K Conservation of Energy for Ideal Fluid

Lecture 21 Act 2 Bernoulli's Principle A housing contractor saves v1/2 some money by reducing the size of a pipe from1” diameter to 1/2 diameter at some point in your house . )What is the pressure in the 1 /2 pipe relative to the 1”pipe? a smaller b same c larger Physics 121: Lecture 21, Pg 10
Physics 121: Lecture 21, Pg 10 Lecture 21 Act 2 Bernoulli’s Principle A housing contractor saves some money by reducing the size of a pipe from 1” diameter to 1/2” diameter at some point in your house. 2) What is the pressure in the 1/2” pipe relative to the 1” pipe? a) smaller b) same c) larger v1 v1/2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 15 A projectile of mass m is launched straight.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 14 Work Kinetic-Energy Theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 13 Work-kinetic energy theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 12 Review session Friday.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 11 Centripetal Acceleration.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 10 displacement.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 8 An Example.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 7 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 6 Homework.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 5 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 4 Average Velocity.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 3 Lectures available on the web.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 2 Lectures available.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 1 Announcements.ppt
- 《大学物理》(习题与答案) 作业答案9-1~~9-24.pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 6 Gravitational Force and Gravitational Field.pdf
- 上海科学技术出版社:《费曼物理学讲义》(第三卷)PDF电子书.pdf
- 《光学薄膜基础知识》讲义.ppt
- 北京大学:《电磁学》课程教学资源(PPT课件)第二章 恒磁场——奥斯特实验.pps