康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 15 A projectile of mass m is launched straight

Physics 121, Sections 9, 10, 11, and 12 Lecture 15 Today's Topics Homework 6 Chap6:#6,12,20,24,29,38,52,57,78,and83 Midterm 1 Average: 65% Chapter 6 Escape velocity Chapter 7 Linear momentum Collision Physics 121: Lecture 15, Pg 1
Physics 121: Lecture 15, Pg 1 Physics 121, Sections 9, 10, 11, and 12 Lecture 15 Today’s Topics: Homework 6: Chap. 6: # 6, 12, 20, 24, 29, 38, 52, 57, 78, and 83. Midterm 1: Average: 65% Chapter 6: Escape velocity Chapter 7: Linear momentum Collision

Problem: How High? a projectile of mass m is launched straight up from the surface of the earth with initial speed vo. What is the maximum distance from the center of the earth RMAx it reaches before falling back down MAX .m Physics 121: Lecture 15, Pg 2
Physics 121: Lecture 15, Pg 2 Problem: How High? A projectile of mass m is launched straight up from the surface of the earth with initial speed v0 . What is the maximum distance from the center of the earth RMAX it reaches before falling back down. RMAX RE v0 m M

Problem: How High No non-conservative and we know forces W NC 0 △K=-△AU MAX .m MAX mvs=GMm MAX Physics 121: Lecture 15, Pg 3
Physics 121: Lecture 15, Pg 3 Problem: How High... No non-conservative forces: WNC = 0 K = -U RMAX v0 m hMAX And we know: RE M = − E MAX 2 0 R 1 R 1 mv GMm 2 1

Problem: How High mv=GMm MAX 尺 m 6=2GM MAX MAX GM 尺 R=1 MAX M 29R RR MAX 尺 MAX E MAX 2gR 2aR Physics 121: Lecture 15, Pg 4
Physics 121: Lecture 15, Pg 4 E 2 0 MAX E MAX E E MAX E 2 E E E MAX 2 0 E MAX 2 0 2gR v R R 1 R R 2gR 1 R R R 1 R GM 2 R 1 R 1 v 2GM R 1 R 1 mv GMm 2 1 − = = − − = = − = − RMAX RE v0 m hMAX M R R v gR MAX E E = 1 − 2 0 2 Problem: How High

Escape Speed (velocity) E MAX 29R If we want the projectile to escape to infinity we need to make the denominator in the above equation zero 0 97 0=√29RE 2gRE 2 We call this value of vo the escape velocity v Physics 121: Lecture 15, Pg 5
Physics 121: Lecture 15, Pg 5 Escape Speed (Velocity) If we want the projectile to escape to infinity we need to make the denominator in the above equation zero: R R v gR MAX E E = 1 − 2 0 2 1 2 0 0 2 − = v gRE v gRE 0 2 2 =1 v0 = 2gRE We call this value of v0 the escape velocity vesc

Escape Velocity Remembering that g GM we find the escape velocity GM from a planet of mass m and radius r to be: Vesc=2p (where= 6.67X 10-11 m3 kg 1s-2) Rp(m)M(kg)9p(m/s2)Vesc(m/s) Earth 6.378×1065.977×10249.81 11.2x103 Moon1.738×1067.352×10221.62 2.38×103 Jupiter7.150×1071900×10224.8 59.5×103 Sun 6.960×1081.989X1029274 195×103 Physics 121: Lecture 15, Pg 6
Physics 121: Lecture 15, Pg 6 Escape Velocity Remembering that we find the escape velocity from a planet of mass Mp and radius Rp to be: (where G = 6.67 x 10-11 m3 kg-1 s -2 ). v GM R esc p p = 2 g GM RE = 2 Moon Earth Sun Jupiter Rp (m) Mp (kg) gp (m/s2 ) vesc(m/s) 6.378x106 5.977x1024 1.738x106 7.352x1022 7.150x107 1.900x1027 6.960x108 1.989x1029 9.81 1.62 24.8 27.4 11.2x103 2.38x103 59.5x103 195.x103

Lecture 15: Act 1 Escape Velocity Two identical spaceships are awaiting launch on two planets with the same mass. Planet 1 is stationery, while Planet 2 is rotating with an angular velocity o Which spaceship needs more fuel to escape to infinity (a)1 (b) (c)same (2) Physics 121: Lecture 15, Pg 7
Physics 121: Lecture 15, Pg 7 Lecture 15: Act 1 Escape Velocity Two identical spaceships are awaiting launch on two planets with the same mass. Planet 1 is stationery, while Planet 2 is rotating with an angular velocity . Which spaceship needs more fuel to escape to infinity. (a) 1 (b) 2 (c) same (1) (2)

Lecture 15: Act 1 Solution Both spaceships require the same escape velocity to reach infinity Thus they require the same kinetic energy Both initially have the same potential energy Spaceship 2 already has some kinetic energy due to its rotational motion, so it requires less work (i.e less fuel) Physics 121: Lecture 15, Pg 8
Physics 121: Lecture 15, Pg 8 Lecture 15: Act 1 Solution Both spaceships require the same escape velocity to reach infinity. Thus they require the same kinetic energy. Both initially have the same potential energy. Spaceship 2 already has some kinetic energy due to its rotational motion, so it requires less work (i.e. less fuel)

V=or Aside This is one of the reasons why all of the worlds spaceports are located as close to the equator as possible r2>1 K2=2m(0r2)2 Physics 121: Lecture 15, Pg 9
Physics 121: Lecture 15, Pg 9 Aside This is one of the reasons why all of the world’s spaceports are located as close to the equator as possible. r1 r2 r2 > r1 K2 = m(r2 ) 2 > 2 1 K1 = m(r1 ) 2 2 1 v = r

Algebraic Solution C=△K+ △U=△E For spaceship 1: Wi=(K-Ko+(r-U0 0,0=0(W7=K+U For spaceship 2: W2=(K-Ko+(r-00 Ko= m(or)2, U0=0 E) W2=KF+U,-m(or)2 W,>W2 So spaceship 1 will need more fuel Physics 121: Lecture 15, Pg 10
Physics 121: Lecture 15, Pg 10 Algebraic Solution WNC = K + U = E For spaceship 1: W1 = (Kf - K0 ) + (Uf - U0 ) K0 = 0 , U0 = 0 W1 = Kf + Uf For spaceship 2: W2 = (Kf - K0 ) + (Uf - U0 ) K0 = m(r)2 ,U0 = 0 W2 = Kf + Uf - m(r)2 W1 >W2 So spaceship 1 will need more fuel
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 14 Work Kinetic-Energy Theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 13 Work-kinetic energy theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 12 Review session Friday.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 11 Centripetal Acceleration.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 10 displacement.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 8 An Example.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 7 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 6 Homework.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 5 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 4 Average Velocity.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 3 Lectures available on the web.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 2 Lectures available.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 1 Announcements.ppt
- 《大学物理》(习题与答案) 作业答案9-1~~9-24.pdf
- 《大学物理》(习题与答案) 作业答案8-1~~8-14.pdf
- 《大学物理》(习题与答案) 作业答案1-1~~1-13.pdf
- 《大学物理》(习题与答案) 作业答案0-1~~0-4.pdf
- 《大学物理》(习题与答案) 作业答案7-1~~7-24.pdf
- 《大学物理》(习题与答案) 作业答案6-1~~6-14.pdf
- 《大学物理》(习题与答案) 作业答案5-1~~5-14.doc
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt