康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 17 Today's Topics

Physics 121, Sections 9, 10, 11, and 12 Lecture 17 Today's Topics Homework 7: due Friday Nov 4@ 6: 00 PM Chap7:#3,11,20,21,25,27,30,40, 46,47,52,and68 Chapter 8 Torque Static equilibrium C.M. motion Rotation Moment of inertia Physics 121: Lecture 17, Pg 1
Physics 121: Lecture 17, Pg 1 Physics 121, Sections 9, 10, 11, and 12 Lecture 17 Today’s Topics: Homework 7: due Friday Nov. 4 @ 6:00 PM. Chap. 7: # 3, 11, 20, 21, 25, 27, 30, 40, 46, 47, 52, and 68. Chapter 8: Torque Static equilibrium C.M. motion Rotation Moment of inertia

Torque The lever arm is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force t=Fd= FL sin Fsinφ F F Fcosφ The sign of the torque is positive if its turning tendency is counterclockwise and negative if its turning tendency is clockwise(right-hand rule) Physics 121: Lecture 17, Pg 2
Physics 121: Lecture 17, Pg 2 Torque The lever arm is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force = Fd = FL sin d L F L F F cos F sin The sign of the torque is positive if its turning tendency is counterclockwise and negative if its turning tendency is clockwise (right-hand rule)

Conditions for Equilibrium An object in mechanical equilibrium must satisfy 1. The net external force must be Zero ∑F=0 2. The net external torque must be zero ∑T=0 The first condition is translational equilibrium and the second is rotational equilibrium If the object is in equilibrium, then the choice of axis of rotation does not influence the calculation of the net torque The location of the axis is arbitrary Physics 121: Lecture 17, Pg 3
Physics 121: Lecture 17, Pg 3 Conditions for Equilibrium An object in mechanical equilibrium must satisfy: 1. The net external force must be Zero: SF = 0 2. The net external torque must be Zero: S = 0 The first condition is translational equilibrium and the second is rotational equilibrium If the object is in equilibrium, then the choice of axis of rotation does not influence the calculation of the net torque; The location of the axis is arbitrary

Objects in Equilibrium Walking a horizontal beam A Uniform horizontal 300 N beam, 5.00 m long, is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by cable that makes an angle of 53 00. If a 600 N person stand 1.5 m from the wall. find the tension in the cable and the force exerted by the wall on the beam 600N 53.0 5.00 Physics 121: Lecture 17, Pg 4
Physics 121: Lecture 17, Pg 4 Objects in Equilibrium Walking a Horizontal Beam A Uniform horizontal 300 N beam, 5.00 m long, is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by cable that makes an angle of 53.00 . If a 600 N person stand 1.5 m from the wall, find the tension in the cable and the force exerted by the wall on the beam. 53.00 5.00 m 600 N

Walking a Horizontal Beam F=R.-Tcos5300=0 F=Ry-Tsin5300-600N-300N=0 Tsin53.09)(500m) (300N)(2.5m) (600N)(1.5m)=0 T=413N.R.=249N.R.=570N 53.0 600N 300N 600N 300N Physics 121: Lecture 17, Pg 5
Physics 121: Lecture 17, Pg 5 Walking a Horizontal Beam Fx = Rx - T cos 53.00 = 0 Fy = Ry - T sin 53.00 – 600 N – 300 N = 0 0 = (T sin 53.00 )(5.00 m) - (300 N)(2.5 m) - (600 N)(1.5 m) = 0 T = 413 N, Rx = 249 N, Ry = 570 N 53.00 600 N 300 N o 600 N 300 N o

Statics Objects are at rest (static)when ∑F=0 AND 0 No translation No rotation When choosing axes about which to calculate torque, we can be clever and make the problem easy Physics 121: Lecture 17, Pg 6
Physics 121: Lecture 17, Pg 6 Statics: Objects are at rest (Static) when : F = 0 = 0 When choosing axes about which to calculate torque, we can be clever and make the problem easy.... No translation No rotation AND

Statics: Using Torque Now consider a plank of mass M suspended by two strings as shown. We want to find the tension in each string First use∑F=0 71+72=Mg cm M This is no longer enough to L2 solve the problem 14 1 equation, 2 unknowns Mg We need more information ! Physics 121: Lecture 17, Pg 7
Physics 121: Lecture 17, Pg 7 Statics: Using Torque Now consider a plank of mass M suspended by two strings as shown. We want to find the tension in each string: L/2 L/4 x cm M T1 T2 Mg y x First use F = 0 T1 + T2 = Mg This is no longer enough to solve the problem ! 1 equation, 2 unknowns. We need more information !!

Using Torque. We do have more information We know the plank is not rotating TOT=0 T2 cm M L2 The sum of all torques is zero 14 This is true about any axis Mg we choose Physics 121: Lecture 17, Pg 8
Physics 121: Lecture 17, Pg 8 Using Torque... We do have more information: We know the plank is not rotating. TOT = 0 The sum of all torques is zero. This is true about any axis we choose ! L/2 L/4 x cm M T1 T2 Mg y x = 0

Using Torque Choose the rotation axis to be along the z direction (out of the page )through the cm: The torque due to the string T1 T2 on the right about this axis is cm M L2 14 The torque due to the string on the left about this axis is Mg Gravity exerts no torque about CM Physics 121: Lecture 17, Pg 9
Physics 121: Lecture 17, Pg 9 Using Torque... Choose the rotation axis to be along the z direction (out of the page) through the CM: L/2 L/4 x cm M T1 T2 Mg y x 2 2 4 =T L The torque due to the string on the right about this axis is: 1 1 2 = −T L The torque due to the string on the left about this axis is: Gravity exerts no torque about CM

Using Torque Since the sum of all torques must be 0 0 T2 T2=27 cm M Ve already found that L2 Mg g Mg 9 Physics 121: Lecture 17, Pg 10
Physics 121: Lecture 17, Pg 10 Using Torque... Since the sum of all torques must be 0: L/2 L/4 x cm M T1 T2 T L T L 2 1 4 2 − = 0 Mg y x T2 = 2T1 We already found that T1 + T2 = Mg T1 Mg 1 3 = T2 Mg 2 3 =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 16 Impulse-momentum theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 15 A projectile of mass m is launched straight.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 14 Work Kinetic-Energy Theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 13 Work-kinetic energy theorem.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 12 Review session Friday.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 11 Centripetal Acceleration.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 10 displacement.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 8 An Example.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 7 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 6 Homework.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 5 Today's Topics.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 4 Average Velocity.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 3 Lectures available on the web.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 2 Lectures available.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 1 Announcements.ppt
- 《大学物理》(习题与答案) 作业答案9-1~~9-24.pdf
- 《大学物理》(习题与答案) 作业答案8-1~~8-14.pdf
- 《大学物理》(习题与答案) 作业答案1-1~~1-13.pdf
- 《大学物理》(习题与答案) 作业答案0-1~~0-4.pdf
- 《大学物理》(习题与答案) 作业答案7-1~~7-24.pdf
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 18 Rotation Kinetic Energy.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 19 Today's Agenda.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 20 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 21 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 22 The Simple Pendulum.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 24 Announcements.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 25 Energy in Thermal Processes.ppt
- 康涅狄格州大学:《普通物理》课程PPT教学课件(英文版)Lecture 23 Thermodynamics.ppt
- 北京大学:《光学》精品课程教学资源(教案讲义)课程导言(钟锡华).pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第一章 费马原理与变折射率光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第二章 波动光学引论.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第三章 介质介面光学与近场光学显微镜.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第四章 干涉装置与光场时空相干性激光.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第五章 多元多维结构衍射与分形光学.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第六章 傅里叶变换光学与相因子分析方法.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第七章 光全息术.pdf
- 北京大学:《光学》精品课程教学资源(教案讲义)第八章 晶体中光的传播.pdf
- 《大学物理》课程电子教案(PPT课件讲稿)第四篇 电磁学 第八章 静电场和稳恒电场.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 4 Kinematics II:Motion in Two and Three Dimensions.pdf
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 5 Newton's Law.pdf