南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System

NANJING UNIVERSITY Transition System Lei Bu bulei@nju.edu.cn
Lei Bu bulei@nju.edu.cn Transition System

效绵县 Definitions and notations Reactive System The intuition is that a transition system consists of a set of possible states for the system and a set of transitions or state changes which the system c can effect. When a state change is the result of an external event or of an action made by the system,then that transition is labeled with that event or action. Particular states or transitions in a transition system can be distinguished
Definitions and notations ◼ Reactive System ◼ The intuition is that a transition system consists of a set of possible states for the system and a set of transitions - or state changes - which the system can effect. ◼ When a state change is the result of an external event or of an action made by the system, then that transition is labeled with that event or action. ◼ Particular states or transitions in a transition system can be distinguished

效绵鼎 model to describe the behavior of systems digraphs where nodes represent states,and edges model transitions state: the current color of a traffic light the current values of all program variables the program counter 0 the value of register and output transition:("state change") o a switch from one color to another the execution of a program statement the change of the registers and output bits for a new input
◼ model to describe the behavior of systems ◼ digraphs where nodes represent states, and edges model transitions ◼ state: the current color of a traffic light the current values of all program variables + the program counter the value of register and output ◼ transition: (“state change”) a switch from one color to another the execution of a program statement the change of the registers and output bits for a new input

效绵鼎 A beverage vending machine pay sprite select beer

效绵鼎 Transition systems A transition systems is a tuple A= where o S is a finite or infinite set of states, So is initial location o Tis a finite or infinite set of transitions, a and B are two mapping from T to S which take each transition t in Tto the two states a(t)and B(t),respectively the source and the target of the transition t. A transition t with some source s and target s'is written t:S→S. Several transitions can have the same source and target. A transition system is finite if S and T are finite
Transition systems ◼ A transition systems is a tuple 𝒜 = where S is a finite or infinite set of states, 𝑆0 is initial location T is a finite or infinite set of transitions, 𝛼 and 𝛽 are two mapping from T to S which take each transition t in T to the two states 𝛼(𝑡) and 𝛽(𝑡), respectively the source and the target of the transition t. ◼ A transition t with some source s and target s’ is written t : s→s’. ◼ Several transitions can have the same source and target. ◼ A transition system is finite if S and T are finite

效绵鼎 Paths A path of length n,n>0,in a transition system A is a sequence of transitions ti,t2.tn,such that Vi:1<i<n,B(ti)=a(ti+1),and a(t)=So Similarly,an infinite path is an infinite sequence of transitions t,t2,…tn…such that Vi:1<i<n,B(ti)=a(ti+1),and a(t)=So
Paths ◼ A path of length n, n > 0, in a transition system 𝒜 is a sequence of transitions 𝑡1 , 𝑡2 ⋯ 𝑡𝑛,such that ∀𝑖: 1 ≤ 𝑖 < 𝑛, 𝛽 𝑡𝑖 = 𝛼(𝑡𝑖+1 ), and 𝛼 𝑡1 = 𝑆0 ◼ Similarly, an infinite path is an infinite sequence of transitions 𝑡1 , 𝑡2, ⋯ 𝑡𝑛, ⋯such that ∀𝑖: 1 ≤ 𝑖 < 𝑛, 𝛽 𝑡𝑖 = 𝛼(𝑡𝑖+1 ), and 𝛼 𝑡1 = 𝑆0

效绵鼎 if3tET,(t)=s∧B(t)=s',we say s→s',we define the generalized transition relation S X A X S such that 0IfS→s',S》s' Ifss',s'-》s",we say s》s" ■ Let A=<S,So,T,a,B be a TS,we say s is reachable if s∈S,So∈So,SoS
◼ 𝑖𝑓 ∃ 𝑡 ∈ 𝑇, 𝛼 𝑡 = 𝑠 ⋀𝛽 𝑡 = 𝑠 ′ ,we say s → 𝑠 ′ , we define the generalized transition relation ↠⊆ S × A × S such that If s → 𝑠 ′ , s ↠ 𝑠 ′ If s ↠ 𝑠 ′ , s ′ ↠ 𝑠 ′′ , 𝑤𝑒 𝑠𝑎𝑦 𝑠 ↠ 𝑠 ′′ ◼ Let 𝒜 = be a TS, we say s is reachable if 𝑠 ∈ 𝑆, 𝑠0 ∈ 𝑆0 , 𝑠0 ↠ 𝑠

效绵县 Let T be a transition system.A state s is a terminal state of T if there are no state s'such that s->s'. A state s is a deadlock state of T if s is reachable and terminal. 2 3
◼ Let T be a transition system. A state s is a terminal state of T if there are no state s’ such that s → 𝑠 ′ . ◼ A state s is a deadlock state of T if s is reachable and terminal

效绵鼎 Write T+for the set of finite paths and T for the set of infinite paths.The mappings a and B can be extended to T+by defining oa(ti...tn)=a(t),B(ti...tn)=B(tn) o A finite path c represents a finite evolution of a TS from state a(c)to B(c) Similarly,the mapping a is extended to T by defining a(t..)=a(t), 0 A infinite path c represents an infinite evolution of a TS from state a(c)
◼ Write 𝑇 + for the set of finite paths and 𝑇 𝜔 for the set of infinite paths. The mappings 𝛼 and 𝛽 can be extended to 𝑇 + by defining 𝛼 𝑡1 … 𝑡𝑛 = 𝛼 𝑡1 , 𝛽 𝑡1 … 𝑡𝑛 = 𝛽(𝑡𝑛) A finite path 𝑐 represents a finite evolution of a TS from state 𝛼 𝑐 to 𝛽 𝑐 ◼ Similarly, the mapping 𝛼 is extended to 𝑇 𝜔 by defining 𝛼 𝑡1 … = 𝛼 𝑡1 , A infinite path 𝑐 represents an infinite evolution of a TS from state 𝛼 𝑐

效绵鼎 ■ A partial product over T+is defined as 0 ifc=ti...tn is apath of length n,if c'=t'1...t'm is a path of length m,and if B(c)=a(c) cc'=ti...tnt't'm is a finite path of length n+m and a(c·c)=a(C),B(c·c)=B(c) T+x T:if c is a finite path,and c'an infinite path,such that B(c)= a(c),then c.c'is an infinite path and a(c.c=a(c) Empty path:for each state s of S,define the empty path &s of length zero,and a(s)=B(s)=s. Ifc is a finite path and ifs a(c)and s'=B(c),then sc=c=c. Ifc is an infinite path and ifs =a(c),then s.c=c
◼ A partial product over 𝑇 + is defined as if 𝑐 = 𝑡1 …𝑡𝑛 is a path of length n, if 𝑐′ = 𝑡′1 … 𝑡′𝑚 is a path of length m, and if 𝛽 𝑐 = 𝛼 𝑐′ 𝑐 ∙ c ′ = 𝑡1 … 𝑡𝑛 𝑡′1 … 𝑡′𝑚 is a finite path of length n+m and 𝛼 𝑐 ∙ c ′ =𝛼 𝑐 , 𝛽 𝑐 ∙ c ′ =𝛽 𝑐′ ◼ 𝑇 + × 𝑇 ω: if c is a finite path, and 𝑐 ′ an infinite path, such that 𝛽 𝑐 = 𝛼 𝑐′ ,then 𝑐 ∙ c ′ is an infinite path and 𝛼 𝑐 ∙ c ′ =𝛼 𝑐 ◼ Empty path: for each state s of S, define the empty path ε𝑠 of length zero, and 𝛼 ε𝑠 =𝛽 ε𝑠 =s. ◼ If c is a finite path and if s = 𝛼 𝑐 and s′ = 𝛽 𝑐 , then ε𝑠 ∙c =c=c ∙ ε𝑠 ′ ; If c is an infinite path and if s = 𝛼 𝑐 , then ε𝑠 ∙c=c
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Turing Machine.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Properties of CFL(The Pumping Lemma for CFL’s).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Pushdown Automata.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Regular Expression.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Context Free Grammar.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Finite Automata.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Byzantine Generals Problem.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Use-after-free.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Taint Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Program Analysis - Data Flow Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow - Representation, Extraction and Applications.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Return-Orinted Programming(ROP Attack).ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Format String Attacks.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow Integrity.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Redundant dynamic Canary.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Defense against Control Flow Hijack Defense - StackGuard, DEP, and ASLR.pdf
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Buffer Overflow Attack.pdf
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Software Security Overview.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Introduction to the course.pdf
- 海南大学:《网络安全技术》课程教学资源(课件讲稿)第9章 入侵检测系统.pdf
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Petri Net.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Timed Automata.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Decidability, Complexity(P, NP, NPC and related).pptx
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data - A Tutorial.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Parallel and Distributed Stochastic Learning - Towards Scalable Learning for Big Data Intelligence(南京大学:李武军).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Coherence functions for multicategory margin-based classification methods.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)agiCoFi - Tag informed collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Localized content-based image retrieval through evidence region identification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Probabilistic relational PCA.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Gaussian process latent random field.pdf