南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Decidability, Complexity(P, NP, NPC and related)

NANJING UNIVERSITY Decidability The diagonalization method The halting problem is undecidable
The diagonalization method The halting problem is undecidable Decidability

效绵鼎 Undecidability decidable all languages regular languages context free languages RE decidable c re c all languages our goal:prove these containments proper
Undecidability decidable RE all languages our goal: prove these containments proper regular languages context free languages all languages decidable RE

效绵鼎 Countable and Uncountable Sets the natural numbers N={1,2,3,...}are countable Definition:a set S is countable if it is finite,or it is infinite and there is a bijection f:N→S
Countable and Uncountable Sets ◼ the natural numbers N = {1,2,3,…} are countable ◼ Definition: a set S is countable if it is finite, or it is infinite and there is a bijection f: N → S

效绵鼎 Example Countable Set The positive rational numbers Q=(m/n |m,n EN} are countable. Proof: 1/1/21/31/41/51/6. 2U12/22/32142152/6. 3/13/23/33143/53/6 4/14/24/34/44/54/6.. 5/1
Example Countable Set ◼ The positive rational numbers Q = {m/n | m, n N } are countable. ◼ Proof: 1/1 1/2 1/3 1/4 1/5 1/6 … 2/1 2/2 2/3 2/4 2/5 2/6 … 3/1 3/2 3/3 3/4 3/5 3/6 … 4/1 4/2 4/3 4/4 4/5 4/6 … 5/1 … …

效绵鼎 Example Uncountable Set Theorem:the real numbers R are NOT countable (they are“uncountable"). How do you prove such a statement? assume countable (so there exists bijection f) derive contradiction (some element not mapped to by f) o technique is called diagonalization (Cantor)
Example Uncountable Set Theorem: the real numbers R are NOT countable (they are “uncountable”). ◼ How do you prove such a statement? assume countable (so there exists bijection f) derive contradiction (some element not mapped to by f) technique is called diagonalization (Cantor)

效绵 Example Uncountable Set ■Proof: suppose R is countable list R according to the bijection f: n f(n) 13.14159. 25.55555.. 30.12345. 40.50000
Example Uncountable Set ◼ Proof: suppose R is countable list R according to the bijection f: n f(n) _ 1 3.14159… 2 5.55555… 3 0.12345… 4 0.50000… …

效绵 Example Uncountable Set ■Proof: suppose R is countable list R according to the bijection f: f(n) set x 0.a azaga4... 13.14159. where digit a#ith digit after decimal 25.55555.. point of f(i)(not 0,9) e.g.×=0.2312. 30.12345.. x cannot be in the list! 40.50000
Example Uncountable Set ◼ Proof: suppose R is countable list R according to the bijection f: n f(n) _ 1 3.14159… 2 5.55555… 3 0.12345… 4 0.50000… … set x = 0.a1a2a3a4… where digit ai ≠ i th digit after decimal point of f(i) (not 0, 9) e.g. x = 0.2312… x cannot be in the list!

效绵鼎 Non-RE Languages Theorem:there exist languages that are not Recursively Enumerable. Proof outline: the set of all TMs is countable the set of all languages is uncountable the function L:{TMslanguages} cannot be onto
Non-RE Languages Theorem: there exist languages that are not Recursively Enumerable. Proof outline: the set of all TMs is countable the set of all languages is uncountable the function L: {TMs} →{languages} cannot be onto

效绵 Non-RE Languages Lemma:the set of all TMs is countable. Proof: the set of all strings >is countable,for a finite alphabet >With only finitely many strings of each length,we may form a list of >by writing down all strings of length 0,all strings of length 1,all strings of length 2,etc. each TM M can be described by a finite-length string s Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs
Non-RE Languages ◼ Lemma: the set of all TMs is countable. ◼ Proof: the set of all strings * is countable, for a finite alphabet . With only finitely many strings of each length, we may form a list of * by writing down all strings of length 0, all strings of length 1, all strings of length 2, etc. each TM M can be described by a finite-length string s Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs

效缥鼎 Non-Re languages Lemma:the set of all languages is uncountable Proof: fix an enumeration of all strings s,s2,S3,... (for example,lexicographic order) 0 a language L is described by its characteristic vector XL whose ith element is 0 ifs;is not in L and 1 ifs:is in L
Non-RE Languages ◼ Lemma: the set of all languages is uncountable ◼ Proof: fix an enumeration of all strings s1 , s2 , s3 , … (for example, lexicographic order) a language L is described by its characteristic vector L whose ith element is 0 if si is not in L and 1 if si is in L
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Timed Automata.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Petri Net.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Turing Machine.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Properties of CFL(The Pumping Lemma for CFL’s).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Pushdown Automata.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Regular Expression.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Context Free Grammar.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Finite Automata.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Byzantine Generals Problem.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Use-after-free.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Taint Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Program Analysis - Data Flow Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow - Representation, Extraction and Applications.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Return-Orinted Programming(ROP Attack).ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Format String Attacks.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow Integrity.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Redundant dynamic Canary.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Defense against Control Flow Hijack Defense - StackGuard, DEP, and ASLR.pdf
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Buffer Overflow Attack.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data - A Tutorial.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Parallel and Distributed Stochastic Learning - Towards Scalable Learning for Big Data Intelligence(南京大学:李武军).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Coherence functions for multicategory margin-based classification methods.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)agiCoFi - Tag informed collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Localized content-based image retrieval through evidence region identification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Probabilistic relational PCA.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Gaussian process latent random field.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Multiple-instance learning via disambiguation.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Generalized latent factor models for social network analysis.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Social relations model for collaborative filtering.pdf