《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data

Learning to Hash for Big Data 李武军 LAMDA Group 南京大学计算机科学与技术系 软件新技术国家重,点实验室 Joint work with孔维吴,张东擎,张培超,张巍,过数意 Nov30,2014 日卡三4元,互Q0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 1/50
Learning to Hash for Big Data o… LAMDA Group HÆåÆOéÅâÆÜE‚X ^á#E‚I[:¢ø Joint work with öëh, ‹¿ô, ‹á, ‹Ü, LØø Nov 30, 2014 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 1 / 50

Outline ① Introduction o Problem Definition Existing Methods ②Isotropic Hashing Supervised Hashing with Latent Factor Model Supervised Multimodal Hashing with SCM Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 6 Conclusion Reference 日卡40三4元,重只0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 2/50
Outline 1 Introduction Problem Definition Existing Methods 2 Isotropic Hashing 3 Supervised Hashing with Latent Factor Model 4 Supervised Multimodal Hashing with SCM 5 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 6 Conclusion 7 Reference Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 2 / 50

Introduction Outline ① Introduction Problem Definition ●Existing Methods Isotropic Hashing Supervised Hashing with Latent Factor Model Supervised Multimodal Hashing with SCM Multiple-Bit Quantization oDouble-Bit Quantization Manhattan Quantization 6 Conclusion Reference 日卡三4元,互Q0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 3/50
Introduction Outline 1 Introduction Problem Definition Existing Methods 2 Isotropic Hashing 3 Supervised Hashing with Latent Factor Model 4 Supervised Multimodal Hashing with SCM 5 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 6 Conclusion 7 Reference Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 3 / 50

Introduction Problem Definition Nearest Neighbor Search(Retrieval) oGiven a query point g,return the points closest(similar)to g in the database(e.g.images). o Underlying many machine learning,data mining,information retrieval problems Challenge in Big Data Applications: o Curse of dimensionality Storage cost ●Query speed 日卡三4元,互Q0 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS.NJU 4/50
Introduction Problem Definition Nearest Neighbor Search (Retrieval) Given a query point q, return the points closest (similar) to q in the database(e.g. images). Underlying many machine learning, data mining, information retrieval problems Challenge in Big Data Applications: Curse of dimensionality Storage cost Query speed Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 4 / 50

Introduction Problem Definition Similarity Preserving Hashing h(Statue of Liberty)= h(Napoleon)= h (Napoleon)= 10001010 01100001 011001Q1 flipped bit Should be very different Should be similar 0Q0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 5/50
Introduction Problem Definition Similarity Preserving Hashing Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 5 / 50

Introduction Problem Definition Reduce Dimensionality and Storage Cost Gist vector Binary reduction 10 million images 20 GB 160MB 口卡+得二4元互)Q0 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS.NJU 6/50
Introduction Problem Definition Reduce Dimensionality and Storage Cost Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 6 / 50

Introduction Problem Definition Querying Hamming distance: 。101101110,00101101la=3 。l11011,01011lg=1 Query Image Dataset ,王○Q0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 7/50
Introduction Problem Definition Querying Hamming distance: ||01101110, 00101101||H = 3 ||11011, 01011||H = 1 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 7 / 50

Introduction Problem Definition Querying 是 口卡得三4元互Q0 Li (http://cs.nju.edu.cn/lvj) Learning to Hash CS.NJU 8/50
Introduction Problem Definition Querying Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 8 / 50

Introduction Problem Definition Querying 口卡得三4元互Q0 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS.NJU 9 /50
Introduction Problem Definition Querying Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 9 / 50

Introduction Problem Definition Fast Query Speed o By using hashing scheme,we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. 日卡三4元,互Q0 Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS.NJU 10/50
Introduction Problem Definition Fast Query Speed By using hashing scheme, we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. Li (http://cs.nju.edu.cn/lwj) Learning to Hash CS, NJU 10 / 50
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Decidability, Complexity(P, NP, NPC and related).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Timed Automata.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Petri Net.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Turing Machine.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Properties of CFL(The Pumping Lemma for CFL’s).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Pushdown Automata.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Regular Expression.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Context Free Grammar.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Finite Automata.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Byzantine Generals Problem.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Use-after-free.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Taint Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Program Analysis - Data Flow Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow - Representation, Extraction and Applications.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Return-Orinted Programming(ROP Attack).ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Format String Attacks.pptx
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data - A Tutorial.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Parallel and Distributed Stochastic Learning - Towards Scalable Learning for Big Data Intelligence(南京大学:李武军).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Coherence functions for multicategory margin-based classification methods.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)agiCoFi - Tag informed collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Localized content-based image retrieval through evidence region identification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Probabilistic relational PCA.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Gaussian process latent random field.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Multiple-instance learning via disambiguation.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Generalized latent factor models for social network analysis.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Social relations model for collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Sparse probabilistic relational projection.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Emoticon smoothed language models for Twitter sentiment analysis.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Double-bit quantization for hashing.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Manhattan hashing for large-scale image retrieval.pdf