《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军)

Learning to Hash with its Application to Big Data Retrieval and Mining Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai,China Joint work with Weihao Kong and Minyi Guo Jan18,2013 日卡三4元,互Q0 i (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 1/45
Learning to Hash with its Application to Big Data Retrieval and Mining Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai, China Joint work with Weihao Kong and Minyi Guo Jan 18, 2013 Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 1 / 45

Outline ①Introduction o Problem Definition Existing Methods Motivation and Contribution ②Isotropic Hashing Model o Learning o Experimental Results Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization ④ Conclusion ⑤Reference 日卡回24元,互Q0 Li(http://www.cs.sjtu.edu.cn/-liwujun) Learning to Hash CSE,SJTU 2 /45
Outline 1 Introduction Problem Definition Existing Methods Motivation and Contribution 2 Isotropic Hashing Model Learning Experimental Results 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 2 / 45

Introduction Outline ①Introduction o Problem Definition Existing Methods Motivation and Contribution Isotropic Hashing Model o Learning o Experimental Results Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization Conclusion Reference 日卡回24元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun) Learning to Hash CSE,SJTU 3 /45
Introduction Outline 1 Introduction Problem Definition Existing Methods Motivation and Contribution 2 Isotropic Hashing Model Learning Experimental Results 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 3 / 45

Introduction Problem Definition Nearest Neighbor Search(Retrieval) oGiven a query point g,return the points closest(similar)to g in the database(e.g.images). o Underlying many machine learning,data mining,information retrieval problems Challenge in Big Data Applications: o Curse of dimensionality Storage cost ●Query speed 日卡三4元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 4 /45
Introduction Problem Definition Nearest Neighbor Search (Retrieval) Given a query point q, return the points closest (similar) to q in the database(e.g. images). Underlying many machine learning, data mining, information retrieval problems Challenge in Big Data Applications: Curse of dimensionality Storage cost Query speed Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 4 / 45

Introduction Problem Definition Similarity Preserving Hashing h (dog)= h(Napoleon)= h (Napoleon)= 10001010 01100001 011001Q1 flipped bit Should be very different Should be similar 0Q0 Li(http://wwv.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 5/45
Introduction Problem Definition Similarity Preserving Hashing Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 5 / 45

Introduction Problem Definition Reduce Dimensionality and Storage Cost Gist vector Binary reduction 1 million images 2 GB 16 MB 口卡+得二4元互)Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE.SJTU 6/45
Introduction Problem Definition Reduce Dimensionality and Storage Cost Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 6 / 45

Introduction Problem Definition Querying Hamming distance: 。101101110,00101101la=3 。l11011,01011lg=1 Query Image Dataset ,30Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CsE,S」TU7/45
Introduction Problem Definition Querying Hamming distance: ||01101110, 00101101||H = 3 ||11011, 01011||H = 1 Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 7 / 45

Introduction Problem Definition Querying 是 口卡得三4元互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 8/45
Introduction Problem Definition Querying Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 8 / 45

Introduction Problem Definition Querying 口卡得三4元互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 9/45
Introduction Problem Definition Querying Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 9 / 45

Introduction Problem Definition Fast Query Speed o By using hashing scheme,we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. 日卡三4元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE.SJTU 10/45
Introduction Problem Definition Fast Query Speed By using hashing scheme, we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 10 / 45
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Decidability, Complexity(P, NP, NPC and related).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Timed Automata.ppt
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Petri Net.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Transition System.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Turing Machine.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Properties of CFL(The Pumping Lemma for CFL’s).pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Pushdown Automata.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Regular Expression.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Context Free Grammar.pptx
- 南京大学:《形式语言与自动机 Formal Languages and Automata》课程教学资源(PPT课件讲稿)Finite Automata.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Byzantine Generals Problem.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Use-after-free.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Taint Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Program Analysis - Data Flow Analysis.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow - Representation, Extraction and Applications.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Return-Orinted Programming(ROP Attack).ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Format String Attacks.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Control Flow Integrity.pptx
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Redundant dynamic Canary.ppt
- 南京大学:《软件安全 Software Security》课程教学资源(PPT课件讲稿)Defense against Control Flow Hijack Defense - StackGuard, DEP, and ASLR.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军).pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data.pdf
- 《大数据 Big Data》课程教学资源(参考文献)大数据机器学习 Big Data Machine Learning.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data - A Tutorial.pdf
- 《大数据 Big Data》课程教学资源(参考文献)Parallel and Distributed Stochastic Learning - Towards Scalable Learning for Big Data Intelligence(南京大学:李武军).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Coherence functions for multicategory margin-based classification methods.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Latent Wishart processes for relational kernel learning(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)agiCoFi - Tag informed collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Localized content-based image retrieval through evidence region identification.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Relation regularized matrix factorization(讲稿).pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Probabilistic relational PCA.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Gaussian process latent random field.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Multiple-instance learning via disambiguation.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Generalized latent factor models for social network analysis.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Social relations model for collaborative filtering.pdf
- 《人工智能、机器学习与大数据》课程教学资源(参考文献)Sparse probabilistic relational projection.pdf