中国高校课件下载中心 》 教学资源 》 大学文库

《大数据 Big Data》课程教学资源(参考文献)Learning to Hash for Big Data Retrieval and Mining(南京大学:李武军)

文档信息
资源类别:文库
文档格式:PDF
文档页数:52
文件大小:2.34MB
团购合买:点击进入团购
内容简介
1 Introduction Problem Definition Existing Methods Motivation and Contribution 2 Isotropic Hashing Model Learning Experimental Results 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference
刷新页面文档预览

Learning to Hash with its Application to Big Data Retrieval and Mining Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai,China Joint work with Weihao Kong and Minyi Guo Jan18,2013 日卡三4元,互Q0 i (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 1/45

Learning to Hash with its Application to Big Data Retrieval and Mining Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai, China Joint work with Weihao Kong and Minyi Guo Jan 18, 2013 Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 1 / 45

Outline ①Introduction o Problem Definition Existing Methods Motivation and Contribution ②Isotropic Hashing Model o Learning o Experimental Results Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization ④ Conclusion ⑤Reference 日卡回24元,互Q0 Li(http://www.cs.sjtu.edu.cn/-liwujun) Learning to Hash CSE,SJTU 2 /45

Outline 1 Introduction Problem Definition Existing Methods Motivation and Contribution 2 Isotropic Hashing Model Learning Experimental Results 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 2 / 45

Introduction Outline ①Introduction o Problem Definition Existing Methods Motivation and Contribution Isotropic Hashing Model o Learning o Experimental Results Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization Conclusion Reference 日卡回24元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun) Learning to Hash CSE,SJTU 3 /45

Introduction Outline 1 Introduction Problem Definition Existing Methods Motivation and Contribution 2 Isotropic Hashing Model Learning Experimental Results 3 Multiple-Bit Quantization Double-Bit Quantization Manhattan Quantization 4 Conclusion 5 Reference Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 3 / 45

Introduction Problem Definition Nearest Neighbor Search(Retrieval) oGiven a query point g,return the points closest(similar)to g in the database(e.g.images). o Underlying many machine learning,data mining,information retrieval problems Challenge in Big Data Applications: o Curse of dimensionality Storage cost ●Query speed 日卡三4元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 4 /45

Introduction Problem Definition Nearest Neighbor Search (Retrieval) Given a query point q, return the points closest (similar) to q in the database(e.g. images). Underlying many machine learning, data mining, information retrieval problems Challenge in Big Data Applications: Curse of dimensionality Storage cost Query speed Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 4 / 45

Introduction Problem Definition Similarity Preserving Hashing h (dog)= h(Napoleon)= h (Napoleon)= 10001010 01100001 011001Q1 flipped bit Should be very different Should be similar 0Q0 Li(http://wwv.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 5/45

Introduction Problem Definition Similarity Preserving Hashing Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 5 / 45

Introduction Problem Definition Reduce Dimensionality and Storage Cost Gist vector Binary reduction 1 million images 2 GB 16 MB 口卡+得二4元互)Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE.SJTU 6/45

Introduction Problem Definition Reduce Dimensionality and Storage Cost Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 6 / 45

Introduction Problem Definition Querying Hamming distance: 。101101110,00101101la=3 。l11011,01011lg=1 Query Image Dataset ,30Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CsE,S」TU7/45

Introduction Problem Definition Querying Hamming distance: ||01101110, 00101101||H = 3 ||11011, 01011||H = 1 Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 7 / 45

Introduction Problem Definition Querying 是 口卡得三4元互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 8/45

Introduction Problem Definition Querying Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 8 / 45

Introduction Problem Definition Querying 口卡得三4元互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE,SJTU 9/45

Introduction Problem Definition Querying Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 9 / 45

Introduction Problem Definition Fast Query Speed o By using hashing scheme,we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. 日卡三4元,互Q0 Li (http://www.cs.sjtu.edu.cn/-livujun Learning to Hash CSE.SJTU 10/45

Introduction Problem Definition Fast Query Speed By using hashing scheme, we can achieve constant or sub-linear search time complexity. Exhaustive search is also acceptable because the distance calculation cost is cheap now. Li (http://www.cs.sjtu.edu.cn/~liwujun) Learning to Hash CSE, SJTU 10 / 45

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档