《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 18 Credit Value at Risk

CreditValueatRiskChapter 18RiskManagementandFinanciallnstitutions3e,Chapter18,CopyrightJohnC.Hull2012
Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 Credit Value at Risk Chapter 18 1

Rating Transitions One year rating transition probabilities arepublished by rating agenciesIf we assume that the rating transition in oneperiod is independent of that in other periods wecan calculate the rating transition for any period(see Appendix J and software)The “ratings momentum" phenomenon meansthat the independence assumption is notperfectly correct2RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
Rating Transitions ⚫ One year rating transition probabilities are published by rating agencies. ⚫ If we assume that the rating transition in one period is independent of that in other periods we can calculate the rating transition for any period (see Appendix J and software) ⚫ The “ratings momentum” phenomenon means that the independence assumption is not perfectly correct Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 2

One-Year Rating TransitionMatrix (% probability, Moody's 1970-2010)Table18.1page401InitialRatingatyearendAAaBAaaBaCaaCa-CDefaultRatingBaaAaa90.428.920.620.010.030.000.000.000.00Aa1.0290.128.380.380.050.020.010.000.02A5.520.510.030.010.062.8290.880.110.060.19Baa0.050.194.7989.414.350.820.180.02Ba0.010.060.410.590.091.226.2283.437.97B5.320.010.040.140.3882.196.450.744.739.41Caa0.000.020.020.160.534.6716.7668.43Ca-C0.000.000.000.000.392.8510.6642.5643.54Default0.000.000.000.000.000.000.000.00100.003RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
One-Year Rating Transition Matrix (% probability, Moody’s 1970-2010) Table 18.1 page 401 Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 3 Initial Rating Aaa Aa A Baa Ba B Caa Ca-C Default Aaa 90.42 8.92 0.62 0.01 0.03 0.00 0.00 0.00 0.00 Aa 1.02 90.12 8.38 0.38 0.05 0.02 0.01 0.00 0.02 A 0.06 2.82 90.88 5.52 0.51 0.11 0.03 0.01 0.06 Baa 0.05 0.19 4.79 89.41 4.35 0.82 0.18 0.02 0.19 Ba 0.01 0.06 0.41 6.22 83.43 7.97 0.59 0.09 1.22 B 0.01 0.04 0.14 0.38 5.32 82.19 6.45 0.74 4.73 Caa 0.00 0.02 0.02 0.16 0.53 9.41 68.43 4.67 16.76 Ca-C 0.00 0.00 0.00 0.00 0.39 2.85 10.66 43.54 42.56 Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 Rating at year end

Five-YearRatingTransitionMatrix (calculatedfromone-yeartransitions)Table18.2page401InitialRatingatendAAaBAaaBaCaaCa-CDefaultRatingBaaAaa61.1229.997.700.890.210.050.010.000.03Aa28.700.250.193.4561.894.710.730.070.01A0.449.720.040.603.241.060.2465.7818.884.640.972.06Baa0.221.6960.9812.930.1316.38Ba0.070.4420.073.700.523.4018.2044.698.92B1.640.040.200.833.2713.2843.0511.4926.21Caa0.010.080.230.933.5216.8018.672.9356.84Ca-C0.000.020.060.311.395.896.782.4083.15Default0.000.000.000.000.000.000.000.00100.00RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull20124
Five-Year Rating Transition Matrix (calculated from one-year transitions) Table 18.2 page 401 Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 4 Initial Rating Aaa Aa A Baa Ba B Caa Ca-C Default Aaa 61.12 29.99 7.70 0.89 0.21 0.05 0.01 0.00 0.03 Aa 3.45 61.89 28.70 4.71 0.73 0.25 0.07 0.01 0.19 A 0.44 9.72 65.78 18.88 3.24 1.06 0.24 0.04 0.60 Baa 0.22 1.69 16.38 60.98 12.93 4.64 0.97 0.13 2.06 Ba 0.07 0.44 3.40 18.20 44.69 20.07 3.70 0.52 8.92 B 0.04 0.20 0.83 3.27 13.28 43.05 11.49 1.64 26.21 Caa 0.01 0.08 0.23 0.93 3.52 16.80 18.67 2.93 56.84 Ca-C 0.00 0.02 0.06 0.31 1.39 5.89 6.78 2.40 83.15 Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 Rating at end

One-Month Rating TransitionMatrix(calculatedfromone-yeartransitions)Table18.3page401InitialRatingatmonthendAAaBAaaBaCaaCa-CDefaultRatingBaaAaa99.160.820.020.000.000.000.000.000.00Aa0.0999.120.770.010.000.000.000.000.00A0.510.040.010.000.000.000.000.2699.180.010.020.01Baa0.000.4499.050.410.060.00Ba0.000.000.020.590.030.010.0998.460.79B0.000.000.010.020.5398.320.700.070.36Caa0.000.000.000.010.021.0196.790.671.48Ca-C0.000.000.000.000.040.281.534.9293.23Default0.000.000.000.000.000.000.000.00100.005RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
One-Month Rating Transition Matrix (calculated from one-year transitions) Table 18.3 page 401 Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 5 Initial Rating Aaa Aa A Baa Ba B Caa Ca-C Default Aaa 99.16 0.82 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Aa 0.09 99.12 0.77 0.01 0.00 0.00 0.00 0.00 0.00 A 0.00 0.26 99.18 0.51 0.04 0.01 0.00 0.00 0.00 Baa 0.00 0.01 0.44 99.05 0.41 0.06 0.02 0.00 0.01 Ba 0.00 0.00 0.02 0.59 98.46 0.79 0.03 0.01 0.09 B 0.00 0.00 0.01 0.02 0.53 98.32 0.70 0.07 0.36 Caa 0.00 0.00 0.00 0.01 0.02 1.01 96.79 0.67 1.48 Ca-C 0.00 0.00 0.00 0.00 0.04 0.28 1.53 93.23 4.92 Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 Rating at month end

Credit VaR (page 321) Can be defined analogously to MarketRiskVaRA one year credit VaR with a 99.9%confidence is the loss level that we are99.9% confidentwill not be exceeded overone year6RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 Credit VaR (page 321) ⚫ Can be defined analogously to Market Risk VaR ⚫ A one year credit VaR with a 99.9% confidence is the loss level that we are 99.9% confident will not be exceeded over one year 6

Vasicek's Model (Equation 18.1, page 402)Foralargeportfolioof loans,eachofwhichhasa probability of O(T) of defaulting by time T thedefault rate that will not be exceeded at the X%confidenceleveljsN-I[Q(T)]+VpN-'(X)N/1-pWhere p is the Gaussian copula correlation7RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 Vasicek’s Model (Equation 18.1, page 402) ⚫ For a large portfolio of loans, each of which has a probability of Q(T) of defaulting by time T the default rate that will not be exceeded at the X% confidence level is ⚫ Where r is the Gaussian copula correlation −r + r − − 1 ( ) ( ) 1 1 N Q T N X N 7

VaR Model (Equation18.2,page 402)Z WCDR,(T,X)×EAD, ×LGD,VaR=RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull20128
VaR Model (Equation 18.2, page 402) Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 8 = i i T X EADi LGDi VaR WCDR ( , )

Credit Risk Plus (Section 18.3, page 403)This calculates a loss probability distribution using aMonte Carlo simulation where the steps are:Sample overall default rateSample probability of default for each counterpartycategorySample number of losses for each counterparty categorySample size of loss for each defaultCalculate total loss from defaultsThis is repeated many times to calculate a probabilitydistribution for the total lossRiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull20129
Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 Credit Risk Plus (Section 18.3, page 403) This calculates a loss probability distribution using a Monte Carlo simulation where the steps are: ⚫ Sample overall default rate ⚫ Sample probability of default for each counterparty category ⚫ Sample number of losses for each counterparty category ⚫ Sample size of loss for each default ⚫ Calculate total loss from defaults This is repeated many times to calculate a probability distribution for the total loss 9

CreditMetrics (Section 18.4, page 405). Calculates credit VaR by consideringpossible rating transitionsA Gaussian copula modelis used to definethe correlation between the ratingstransitions of different companies10RiskManagementandFinancialInstitutions3e,Chapter18,CopyrightJohnC.Hull2012
Risk Management and Financial Institutions 3e, Chapter 18, Copyright © John C. Hull 2012 CreditMetrics (Section 18.4, page 405) ⚫ Calculates credit VaR by considering possible rating transitions ⚫ A Gaussian copula model is used to define the correlation between the ratings transitions of different companies 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 17 Counterparty Credit Risk in Derivatives.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 16 Credit Risk - Estimating Default Probabilities.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 15 Market Risk VaR - Model - Building Approach.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 14 Market Risk VaR - Historical Simulation Approach.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 13 Basel 2.5, Basel III, and Dodd-Frank.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 12 Basel I, Basel II, and Solvency II.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 11 Correlations and Copulas.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 10 Volatility.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 09 Value at Risk.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 08 Interest Rate Risk.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 07 How Traders Manage Their Risks.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 06 The Credit Crisis of 2007.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 05 Trading in Financial Markets.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 04 Mutual Funds and Hedge Funds.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 03 Insurance Companies and Pension Plans.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 02 Banks.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 01 Introduction.ppt
- 武汉理工大学:《产业结构理论》课程教学课件(讲稿)第八章 产业融合 Industrial convergence.pdf
- 武汉理工大学:《产业结构理论》课程教学课件(讲稿)第七章 产业集聚 Industrial cluster.pdf
- 武汉理工大学:《产业结构理论》课程教学课件(讲稿)第六章 主导产业 Leading industry.pdf
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 19 Scenario Analysis and Stress Testing.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 20 Operational Risk.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 21 Liquidity Risk.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 22 Model Risk.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 23 Economic Capital and RAROC.ppt
- 《金融风险管理》课程PPT教学课件(Risk Management and Financial Institutions)Chapter 24 Risk Management Mistakes to Avoid.ppt
- 《宏观经济学》课程教学资源(PPT课件,完整讲稿,共十三章).ppt
- 《宏观经济学》课程各章习题答案(共十三章).pdf
- 《货币银行学》课程教学大纲 Economics of Money, Banking and Financial Markets(中文).pdf
- 《货币银行学》课程教学大纲 Economics of Money, Banking and Financial Markets(英文).pdf
- 《货币银行学》课程授课教案(中文讲义)第二章 信用与金融工具.pdf
- 《货币银行学》课程授课教案(中文讲义)第一章 货币与货币制度.pdf
- 《货币银行学》课程授课教案(中文讲义)第四章 利率.pdf
- 《货币银行学》课程授课教案(中文讲义)第三章 金融市场.pdf
- 《货币银行学》课程授课教案(中文讲义)第八章 货币理论.pdf
- 《货币银行学》课程授课教案(中文讲义)第七章 中央银行.pdf
- 《货币银行学》课程授课教案(中文讲义)第五章 金融中介机构介绍.pdf
- 《货币银行学》课程授课教案(中文讲义)第六章 商业银行的业务与管理.pdf
- 《货币银行学》课程授课教案(中文讲义)第十一章 金融的脆弱性与金融监管.pdf
- 《货币银行学》课程授课教案(中文讲义)第九章 通货膨胀与通货紧缩.pdf