《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 5 The direct solution of system of linear equations

Chapter 5 The direct solution ofsystem of linear equations$ 1 the introduction of practical problem$ 2 the gauss elimination method$ 3 the triangular decomposition of matrixs 4 the chasing method$ 5 the norm of matrixs and vectors$ 6 the conditions and error analyses aboutsystem of linear equations上页下页返回
上页 下页 返回 §1 the introduction of practical problem Chapter 5 The direct solution of system of linear equations §3 the triangular decomposition of matrixs §4 the chasing method §5 the norm of matrixs and vectors §6 the conditions and error analyses about system of linear equations §2 the gauss elimination method

S1theintroductionofpracticalproblem20BAC39WWi1.3Look at an actual problem firstly.高2QWIn the circuitdiagram,20250Vvolts0bythe law of Kirchhoff:710Any nodeinthecircuit.F4030at any instant, the outflow (inflow) all current algebra of the node iszero all the time.With G as a reference point, the current satisfy linear equations below:5i +5iz = Vi-i-i=02i4-3i, = 0i-i-i = 0上页5iz-7i,-2i4=0下页返回
上页 下页 返回 §1 the introduction of practical problem Look at an actual problem firstly. In the circuit diagram, Any node in the circuit, With G as a reference point, the current satisfy linear equations below: − − = − − = − = − − = + = 5 7 2 0 0 2 3 0 0 5 5 2 3 4 1 2 3 4 5 3 4 5 1 2 i i i i i i i i i i i i i V by the law of Kirchhoff: at any instant, the outflow (inflow) all current algebra of the node is zero all the time

The problems of solving linear equations show up in many practical problems,For example: structure analysis, network analysis, geodesy, data analysis,optimizationProblemetc.The problems of solving linear equations also show up in many mathematicalproblems.For example: three spline, the least square method, nonlinear equation,differentialequations,thefiniteelementmethod.The methods of sloving the system of linear equations take up a importantplace in numberical analysisThe methods of sloving the system of linearequations as follows:上页下页返圆
上页 下页 返回 For example: structure analysis, network analysis, geodesy, data analysis, optimizationProblem etc. ➢ The problems of solving linear equations show up in many practical problems, ➢The problems of solving linear equations also show up in many mathematical problems. For example: three spline, the least square method, nonlinear equation,differential equations,the finite element method. The methods of sloving the system of linear equations take up a important place in numberical analysis. The methods of sloving the system of linear equations as follows:

Ifthereis a system of linearequations withn unkownsaix +ax2 +...+anx, =ba21xi +a22x +... +a2nx, = b,anix+an2x2+...+amx, =bExpressed in matrixs and vectors, the above system of equations can be rewritten as:Ax = bwhere:b,xiana12dinb2X2a1a22annb=A=x=..b.上页xnanlan2ann下页返回
上页 下页 返回 If there is a system of linear equations with n unkowns 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b + + + = + + + = + + + = Expressed in matrixs and vectors, the above system of equations can be rewritten as: Ax b = where: 11 12 1 21 22 2 1 2 n n n n nn a a a a a a A a a a = 1 2 n x x x x = 1 2 n b b b b =

When det(A) + O, the system of linear equations have the unique solution.The methods of sloving the system of linear equations :(1)Direct solution:mainly for the coefficient matrixs of linear equations arelower order dense matrix and some large sparse matrixs;(2)Iterative method : mainly for the solutions of linear equations with largesparse matrixs.上页下页返圆
上页 下页 返回 ➢The methods of sloving the system of linear equations : When det( ) 0 A , the system of linear equations have the unique solution. (2) Iterative method : mainly for the solutions of linear equations with large sparse matrixs. (1)Direct solution:mainly for the coefficient matrixs of linear equations are lower order dense matrix and some large sparse matrixs;

s2Gauss EliminationsloluteAx =blGaussordereliminationidea:Thegoal of forward elimination is to-transform the coefficientmatrix into anupper triangular matrixTwo steps:1.Forward Elimination2.Back SubstitutionAx= bForthis system oflinearequations:if det(A) O The elementary row transformation of the augmented matrix:a(1)6()ainaacbCrecorded?A=(A,b)(A(I)=........上页am)q()g(1)6(1)下页n2nnn返圆
上页 下页 返回 slolute Ax b = 1、Gauss order elimination idea: The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix 。 = §2 Gauss Elimination For this system of linear equations: Ax = b The elementary row transformation of the augmented matrix: A = (A,b) = (1) (1) (1) 2 (1) 1 (1) 2 (1) 2 (1) 2 2 (1) 2 1 (1) 1 (1) 1 (1) 1 2 (1) 1 1 n n n n n n n a a a b a a a b a a a b ( , ) (1) (1) A b recorded = i f det(A) 0 Two steps: 1. Forward Elimination 2. Back Substitution

if a 0Elimination:(1)aliiDefinning line multiplier:i=2,3,..,nmi1row(i) - row(1) × m1, thus :a(2 = a" - mnal)i,j=2,3,..,nb(2) = b(1) - m,b(1)i= 2,3,..,nall爱..aL0福(A(1),b(1)) →(A(2),b(2)) =....·bSalq(2)0上页?nn下页返回
上页 下页 返回 = (2) (2) (2) 2 (2) 2 (2) 2 (2) 2 2 (1) 1 (1) 1 (1) 1 2 (1) 1 1 0 0 n n n n n n a a b a a b a a a b ( , ) (2) (2) A b 0 (1) if a11 Definning line multiplier: i n a a m i i 2,3, , (1) 1 1 (1) 1 1 = = ( ) (1) , : 1 row i row m thus − i (1) 1 1 (2) (1) aij = aij −mi a j (1) 1 1 (2) (1) bi = bi − mi b i, j = 2,3, , n i = 2,3, ,n ( , ) (1) (1) A b Elimination:

if all) =O because det(A)±0Thus : there are more than one element that isnot O in the first colum of Aif al) + O,thus : exchange the first row's positon of(A(), b()with the ith row's position,then :e lim ination.aa(1)6(1))ain(2)(2)(2)bs0a22a2nand.··det(0)+0(2)6(2)(2)0aCn21nnso,after k -lth step,(A), b())will as follows :上页下页返圆
上页 下页 返回 0 ( 1 ) if a11 = because det(A) 0 not in the first colum of A Thus there are more than one element that is 0: ' , : lim . 0, : ' ( , ) 1 (1) (1) (1) 11 with the i t h row s position then e ination if ai thus exchange the first row s positon of A b (2) (2) (2) 2 (2) 2 (2) 2 (2) 2 2 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 2 ( 1 ) 1 1 00 n n n n nn a a b a a b a a a b and det( • ) 0 , 1 ,( , ) : (1) (1) so after k − t h step A b will as follows

allaa)aa)·(A(1),b(1)) →(A(k),b(k))(k)(k)Rqaknkk(k)(k)6(k)Definning line multiplier:Oanknnnai=k+l,...,nmik(k)aikdet() +0ith row - k thxmik,thus :(k+1)(k)(k)i,j=k+1,...,na-mikaij11i=k+1,..,n= b(*) - mxb(l)上页b(k+1) 下页返回
上页 下页 返回 = ( ) ( ) ( ) ( ) ( ) ( ) (2) 2 (2) 2 (2) 2 2 (1) 1 (1) 1 (1) 1 2 (1) 1 1 k n k n n k n k k k k kn k kk n n a a b a a b a a b a a a b ( , ) (k ) (k ) ( , ) A b (1) (1) A b det(•) 0 Definning line multiplier: i k n a a m k kk k i k i k 1, , ( ) ( ) = = + ith row k th m ,thus: − i k ( 1) ( ) (k ) ik kj k ij k aij = a −m a + ( 1) ( ) (k ) i k k k i k bi = b − m b + i, j = k + 1, , n i = k + 1, ,n

Afterk =n -1 steps,(A,b()will as follows :q.(1+a12Oin11aa(A(1),b(1)) →(A(n),b(n)) :·b(n)q(n)nnnbecause : det(A) ± 0we can know: al ± Oi=1,2,.,nso,the upper triangular equationsA(n)x = b(n) has the unique soiution上页The solution of Ax = b is :下页返回
上页 下页 返回 = ( ) ( ) (2) 2 (2) 2 (2) 2 2 (1) 1 (1) 1 (1) 1 2 (1) 1 1 n n n n n n n a b a a b a a a b ( , ) (1) (1) A b 1 ,( , ) : (1) (1) Afterk = n− steps A b will as follows ( , ) (n) (n) A b because : det(A) 0 we can know a i n i i i : 0 1,2, , ( ) = The solution of Ax = b is : so the uppertriangular equationsA x b has the unique soiution (n) (n) , =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 4 Numerical Integration and Numerical Differentiation.pptx
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 3 Interpolation method.ppt
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 2 the numerical solution of the nonlinear equations.ppt
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 1 Introduction.ppt
- 《拓扑学》课程教学大纲 Topology.pdf
- 《线性代数》课程教学大纲 Linear Algebra.pdf
- 《复变函数与积分变换》课程教学资源(PPT课件)第九章 拉普拉斯变换(Laplace变换).ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第九章 拉普拉斯变换(常见区域变换表).ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第八章 傅里叶变换(Fourier变换).ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第六章 共形映射 6.1 第一节 共形映射的概念.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第六章 共形映射 6.4 第四节 几个初等函数所构成的映射.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第六章 共形映射 6.0 习题课.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第六章 共形映射 6.3 第三节 唯一决定分式线性映射的条件.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第六章 共形映射 6.2 第二节 分式线性映射.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第五章 留数及其应用 5.1 第一节 孤立奇点.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第五章 留数及其应用 5.3 第三节 留数在定积分计算上的应用.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第五章 留数及其应用 5.2 第二节 留数.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第五章 留数及其应用 5.0 习题课.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第五章 留数及其应用 5.4 第四节 对数留数与辐角原理.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件)第四章 解析函数的级数表示 4.2 第二节 幂级数.ppt
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 6 Iterative Methods for Solving Linear Equations.ppt
- 《数值分析》课程PPT教学课件(Numerical Analysis)Chapter 7 The numerical solution of the matrix eigenvalue problem.ppt
- 《微积分》课程教学课件(Calculus)01. Preliminaries.pdf
- 《微积分》课程教学课件(Calculus)02. Limits and Continunity.pdf
- 《微积分》课程教学课件(Calculus)03. Derivatives.pdf
- 《微积分》课程教学课件(Calculus)04. Applications of Derivatives.pdf
- 《微积分》课程教学课件(Calculus)05. Integration.pdf
- 《微积分》课程教学课件(Calculus)06. Applications of Definite Integrals.pdf
- 《微积分》课程教学课件(Calculus)07. Integrals and transcendental functions.pdf
- 《微积分》课程教学课件(Calculus)08. Techniques of Integration.pdf
- 《微积分》课程教学课件(Calculus)09. First-Order Differential Equations.pdf
- 《微积分》课程教学课件(Calculus)10. Infinite Sequences and Series.pdf
- 《微积分》课程教学课件(Calculus)11. Parametric Equation and Polar Coordinates.pdf
- 《微分几何》课程教学大纲.doc
- 《微分几何》课程教学资源(书籍文献)数学丛书[几何拓扑].[微分几何理论与习题]PDF电子版.pdf
- 《微分几何》课程教学资源(书籍文献)数学丛书[几何拓扑].[微分几何习题集]PDF电子版.pdf
- 《微分几何》课程教学资源(PPT课件)第一章 曲线论 1.2 曲线的概念.ppt
- 《微分几何》课程教学资源(PPT课件)第一章 曲线论 1.3 空间曲线.ppt
- 《微分几何》课程教学资源(PPT课件)第二章 曲面论 2.2 曲面的第一基本形式.ppt
- 《微分几何》课程教学资源(PPT课件)第二章 曲面论 2.3 曲面的第二基本形式.ppt