长春大学:《高等数学》课程作业习题(微积分)第四章 不定积分总习题、自测题及其详解

第四章不定积分总习题、自测题及其详解
第四章 不定积分 总习题、自测题及其详解

总习题四1.求下列各不定积分,-273xx2.3*-5.2dx(3)3#COS231(6)5Xx2+925x2x-31-x2dx :782-3x+8dx(10)xcos? x/tan x1(12)[sinxcos'xdx :(11)(arcsinx)?i-xa) +ldx(13)14/x+1派(15)dx(16)x(/x+/x)[x2~4-xdx:(17)(18)dx1(19)(20)dxdx1+x2)V1+x[xsin2xdx :Inxdx(21)[ xarctan xdx ;(23)(24)4x3X2x2-5(25)dx5x2+62.若f(x)的导函数是sinx,求f(x)的全体原函数
总习题四 1. 求下列各不定积分. (1) 3 27 3 x dx x − − ; (2) 2 2 3 1 x dx + x ; (3) 2 3 5 2 3 x x x dx − ; (4) 2 2 sin 1 cos 2 x dx x − + ; (5) 2 1 1 25 dx − x ; (6) 2 1 2 9 dx x + ; (7) 2 2 3 3 8 x dx x x − − + ; (8) 2 x x dx 1− ; (9) 3 2 x x e dx − ; (10) 2 1 cos tan dx x x ; (11) 2 2 1 (arcsin ) 1 dx x x − ; (12) 3 5 sin cos x xdx ; (13) 3 ( ) 1 1 x dx x + + ; (14) 4 1 dx x x + ; (15) 3 3 ( ) x dx x x x + ; (16) 1 2 x dx x x + − ; (17) 2 2 x x dx 4 − ; (18) 2 2 2 a x dx x − ; (19) 2 2 2 (1 ) x dx + x ; (20) 2 1 1 dx x x + ; (21) x xdx sin 2 ; (22) 2 ln xdx ; (23) x xdx arctan ; (24) 3 3 1 4 x dx x x − − ; (25) 2 4 2 2 5 5 6 x dx x x − − + . * 2 . 若 f x( ) 的导函数是 sin x ,求 f x( ) 的全体原函数

xxdx3*.求-cosxdx4.求1-cos2x5解答下列各题[evzx- dx:(1)求x(2) 求[dxx4+2x2+5(3)设[xf(x)dx=arcsinx+C,求sin×是f()的一个原菌数,求Jx f(x)dx.,已知(4)x(这些题目都是硕士研究生入学统一考试试题,供大家参考。)
* 3 . 求 x x dx . * 4 . 求 1 cos 1 cos2 x dx x − − . * 5 解答下列各题 (1) 求 2 1 x e dx − ; (2) 求 4 2 2 5 x dx x x + + ; (3)设 xf x dx x C ( ) arcsin = + ,求 1 ( ) dx f x ; (4) 已知 sin x x 是 f x( ) 的一个原函数,求 3 x f x dx ( ) . (这些题目都是硕士研究生入学统一考试试题,供大家参考.)

总习题四详解1.求下列各不定积分,3.x-27dx22.3*-5.2dx(3)3#COS23-(6)5xx2+925x2x-31-xdx782-3x+8dx(10)dxcos? x/tan x1(12)[sin'xcos' xdx :(11)(arcsinx)i-xa +ldx(13)(14)/x+1派(15)dx(16)x(/x+/x)-2Vq2x[x2~4-xdx:(17)(18)dx(a>0) 1(19)(20)dxdx1+x2)V1+x[xsin2xdx:In’ xdx(21)[xarctan xdx;(23)(24)d4r3X2x2-5(25)dx5x2+6
总习题四详解 1. 求下列各不定积分. (1) 3 27 3 x dx x − − ; (2) 2 2 3 1 x dx + x ; (3) 2 3 5 2 3 x x x dx − ; (4) 2 2 sin 1 cos 2 x dx x − + ; (5) 2 1 1 25 dx − x ; (6) 2 1 2 9 dx x + ; (7) 2 2 3 3 8 x dx x x − − + ; (8) 2 x x dx 1− ; (9) 3 2 x x e dx − ; (10) 2 1 cos tan dx x x ; (11) 2 2 1 (arcsin ) 1 dx x x − ; (12) 3 5 sin cos x xdx ; (13) 3 ( ) 1 1 x dx x + + ; (14) 4 1 dx x x + ; (15) 3 3 ( ) x dx x x x + ; (16) 1 2 x dx x x + − ; (17) 2 2 x x dx 4 − ; (18) 2 2 2 ( 0) a x dx a x − ; (19) 2 2 2 (1 ) x dx + x ; (20) 2 1 1 dx x x + ; (21) x xdx sin 2 ; (22) 2 ln xdx ; (23) x xdx arctan ; (24) 3 3 1 4 x dx x x − − ; (25) 2 4 2 2 5 5 6 x dx x x − − +

[2-27dx =[(αx-3) +3x+9]dx解:(1)「x-3=J(x* +3x+9)dx =兰+3r2+9x+c;323x2+3-33x心(2)dx=1+xdx =3x-3arctan x+c;[3dx-[H[2-3*-5.2′ d = [x=2 dx-5][() db2-5 ((3)3x2-3=2x-In2-In32-sinx1+cosxdx=/2xd(4)dx2cosx+cos2xtanxx+c22(5x)5251(5x)arcsin5x+C;56)2Vx3V22-arctan36x-3adx=[,-3x+8-d(x2-3x+8)(7)-3x+8=In|x2-3x+8|+c;(8)[x/1-xdx=--[/1-xd(1-x)(1
解:(1) 3 27 3 x dx x − − 2 ( 3)( 3 9) 3 x x x dx x − + + = − 2 = + + ( 3 9) x x dx 3 2 3 = + 9 3 2 x x + +x c ; (2) 2 2 3 1 x dx + x 2 2 3 3 3 1 x dx x + − = + = 2 3 3 1 dx dx x − + = − + 3 3arctan x x c ; (3) 2 3 5 2 3 x x x dx − 2 2 2 5 2 5 3 3 x x dx dx dx = − = − 2 3 2 5 ln 2 ln 3 x x c = − + − ; (4) 2 2 sin 1 cos 2 x dx x − + 2 2 1 cos 2cos x dx x + = = 1 1 2 sec 2 2 dx xdx + tan 2 2 x x = + + c ; (5) 2 1 1 25 dx − x ( ) 2 1 1 5 5 1 (5 ) d x x = − 1 arcsin 5 5 = +x c ; (6) 2 1 2 9 dx x + 2 1 2 9 1 3 dx x = + 2 2 arctan 6 3 = +x c ; (7) 2 2 3 3 8 x dx x x − − + 2 2 1 ( 3 8) 3 8 d x x x x = − + − + 2 = − + + ln 3 8 x x c ; (8) 2 x x dx 1− 1 2 2 1 (1 ) 2 = − − − x d x 3 2 2 1 (1 ) 3 = − − + x c ;

[x?.e- dx :(9)-r d(-x3lefcSer-(10)ddtanxcos?xytanxtanxtanx=2/tanx+c;(11)darcsinxdx(arcsinx)/-x?(arcsinxParcsinx(12)[sin'xcos' xdx =[sin x(1-cos’ x)cos' xdx=-J(1-cos’ x)cos xd cosx1cos"x-cosx+c86(Vx +1)(x- Vx +1)Vx+1(13)dxdb/x +1Vx+1-[(x-x+1)x=→-+x+c;23(14)设x=t,x=t4dx=4t dt,则C.4r3-dx =[dt4-x+4x1+[-1+ldt=4[(-1])d+J,-dtt+1= 2(t? -2t+21n|t+1)+c= 2(Vx-2/x+21n|x+1+c)(15)设x=t,x=t,dx=6tdt,则3/x
(9) 3 2 x x e dx − ( ) 3 1 3 3 x e d x − = − − 1 3 3 x e c − = − + ; (10) 2 1 cos tan dx x x 2 sec 1 tan tan tan x dx d x x x = = = + 2 tan x c ; (11) ( ) 2 2 1 arcsin 1 dx x x − ( ) 2 1 arcsin arcsin d x x = 1 arcsin c x = − + ; (12) 3 5 sin cos x xdx ( ) 2 5 = − sin 1 cos cos x x xdx ( ) 2 5 = − −1 cos cos cos x xd x = 1 1 8 6 cos cos 8 6 x x c − + ; (13) ( ) 3 1 1 x dx x + + ( 1) 1 ( ) 1 x x x dx x + − + = + = − + ( x x dx 1) 1 2 2 3 = 2 3 x x x c − + + ; (14) 设 4 x = t , 4 x t = 3 dx t dt = 4 ,则 4 1 dx x x + 3 4 2 2 1 4 = t dt dt t t t t = + + ( ) 2 1 1 1 4 4[ 1 ] 1 1 t dt t dt dt t t − + = = − + + + = 2 2( 2 2ln 1) t t t c − + + + = 4 4 2( 2 2ln 1 ) x x x c − + + + ; (15) 设 6 x = t , 6 x t = , 5 dx t dt = 6 ,则 ( ) 3 3 x dx x x x + ( ) ( ) 2 2 5 6 6 3 2 6 3 2 (6 ) = t t t dt dt t t t t t t = + +

= 6ln-6ln|t+1|+c/x+1x+1(16)(解法一)x/x/r2d(x-2)+v2x-=2/x-2+2arctan设x-2=t,x=?+2,dx=2tdt,则(解法二)[+2+l,2tdt =2(x+1dx=d2 +(2)1/x-2(t2 +2)t+actanx2x-2)+c=2/x-2+/2arctan= 2(t +V2(17)设x=2sint(t=arcsin)dx=2costdt,则[x?/4-x dx =[4sin?t.2costd2sint=16 sin’t.cos'tdt1- cos 4f t4sin?2tdt=422[| dt-Jcos 4td(4t) =2t-sin4t+c1=2t-↓:2sin 2tcos21+c2=2t-2sint-cost(1-2sin2t)+=2arcsin =-2.二.V4-222--14-V4-x2+=2arcsin242
2 1 1 1 6 6 ( ) 1 dt dt t t t t = = − + + = 6ln 6ln 1 t t c − + + = ( ) 6 6 ln 1 x c x + + ; (16)( 解法一) 1 2 x dx x x + − 1 1 2 2 dx x x x = + − − = ( ) 2 1 1 2 2 2 2 2 2 1 2 x d x d x x − − + − − + = 2 2 2 2 arctan 2 x x c − − + + ; ( 解法二) 设 x − 2 = t , 2 x t = + 2, dx tdt = 2 ,则 2 2 2 2 2 2 1 2 1 2 1 .2 2( ) 2 ( 2) ( 2) 2 x t t dx tdt dt dt x x t t t t + + + + = = + − + + + tan 2 2( ) c 2 x ac = + + = t 2 2 2 2 arctan 2 x x c − − + + (17) 设 x t = 2sin ( arcsin ) 2 x t = , dx tdt = 2cos ,则 2 2 x x dx 4 − 2 2 2 = 4sin 2cos 2sin 16 sin cos t td t t tdt = = 2 1 cos 4 4 sin 2 4 2 t tdt dt − = = cos 4 (4 )] 4 1 2[ dt td t − = 1 2 sin 4 t 2 t c − + = 1 2 2sin 2 cos 2 2 t t t c − + = ( ) 2 2 2sin cos 1 2sin t t t t c − − + = 2 2 4 2arcsin 2 1 2 2 2 2 4 x x x x c − − − + = 3 2 2 2arcsin 4 4 2 2 4 x x x − − + − + x x c ;

(18)(解法X-arcsin=+c;1aX(解法二)设x=asint(t=arcsin=)dx=acostdt,则aVa?-xYa?-(asint)?rcostdt[cot? tdt = [(csc t -1)dtacostdt=(asint)?sin"tcOsX-cott-t+c=-arcsin=+cxsinxaaAJa?-x?-arcsin-+ca(19)设x=tant(t=arctanx),dx=sectdt,则tan"ttant2dtantsecsec-1-cos2t2sin2t+c24x-arctanxFC2(1 +x2)2(解法dxa(20)设XF=xdt=-In+ V1+Vi+t?
(18)( 解法一 ) 2 2 2 a x dx x − 2 2 2 2 2 2 1 1 1 a x d a x dx x x a x = − − = − − − − 1 2 2 arcsin x a x c x a = − − − + ; (解法二) 设 x a t = sin ( arcsin ) x t a = , dx a tdt = cos ,则 2 2 2 a x dx x − 2 2 2 2 2 2 2 (a sin ) cos = a cos cot (csc 1)dt (a sin ) sin a t tdt tdt tdt t t t − = = = − 2 1 ( ) cos cott t c arcsin sin x x x a t c x a x a − = − − + = − − = − − + 1 2 2 arcsin x a x c x a = − − − + (19) 设 x t = tan ( t x = arctan ), 2 dx tdt = sec ,则 ( ) 2 2 2 1 x dx + x 2 2 4 2 tan tan tan sec sec t t d t dt t t = = 2 1 cos 2 sin 2 t tdt dt − = = 1 1 sin 2 2 4 = − + t t c = 2 1 arctan 2 2(1 ) x x c x − + + ; (20) (解法一)设 1 x t = , 1 t x = 2 1 dx dt t = − 2 1 1 dx x x + 2 2 2 2 2 2 1 1 1 1 1 1 1 1 ln 1 1 d t t t t dt t t dt t t c t = + = − + = − = − + + + +

设x=tant(t=arctanx),dx=sec tdt,则(解法二)1sect.sectdtd1tanttan t/1 + tan? t-Jcsc tdt= ncsct-cott+cn+-Y11,csct=/1+cot"1=/1+()cott=tant(注:(21) [xsin2xdx =- xd(cos2x)=-(xcos 2x-Jcos 2xdx1xcos2x+sin2x+c4.(22)[In'xdx =xn'x-J xd In'x=xn' x-2[In xdx=xn x-2(xinx-J xd Inx)=xln2x-2x(lnx-1)+c;(23) [xarctan xdx =[arctan xdXdarctanxarctanxxarctanx2211xarctanxarctanx+c:X-2122(24)
= 1 ln 1 x c x + − + 2 1 ; (解法二) 设 x t = tan ( t x = arctan ), 2 dx tdt = sec ,则 2 2 2 1 1 sec .sec 1 tan 1 tan tan t dx tdt dt x x t t t = = + + = tdt = t − t + c csc ln csc cot = 1 ln 1 x c x + − + 2 1 (注: 2 2 ) 1 ,csc 1 cot 1 ( 1 tan 1 cot x t t t x t = = = + = + ) (21) x xdx sin 2 ( ) 1 = cos 2 2 − xd x ( ) 1 cos 2 cos 2 2 = − − x x xdx = 1 1 cos 2 sin 2 2 4 − + + x x x c ; (22) 2 ln xdx 2 2 2 = − = − x x xd x x x xdx ln ln ln 2 ln ( ) 2 = ln 2 ln ln x x x x xd x − − ( ) 2 = − − + x x x x c ln 2 ln 1 ; (23) x xdx arctan 2 = arctan 2 x xd ( ) 2 2 2 2 2 1 arctan arctan = arctan 2 2 2 2 1 x x x x d x x x dx x = − − + 1 1 1 2 arctan arctan 2 2 2 = − + + x x x x c ; (24) 3 3 1 4 x dx x x − −

- x) + (8x- 4)-7x4x4x347x(2x +1)(2x -1)(2x +1)8712x+12(2x -1)2(2x9/2(2x +1)2(2x-1+c16h11211.132/32V2x+>2x+/32.若f(x)的导函数是sinx,求f(x)的全体原函数.解:因为f(x)的导函数是sinx,即f"(x)=sinx,有f(x)=「sinxdx=-cosx+c[ f(x)dx=J(-cosx+c)dx=-sinx+cx+c2,3'.求[x|xdx.解:当x>0时,[xxx=[x?dx=!当x≤0时,[x|xdx={-x°dx=-cosx_dxcos2x-cosx dx =r1-cosx dx解:cos2x2sinx
3 3 1 (4 ) (8 4) 7 = 4 4 1 4 7 1 4 (2 1) (2 1)(2 1) 1 4 8 7 7 1 ( ) 4 2 1 2(2 1) 2(2 1) 1 4 9 7 1 4 2(2 1) 2(2 1) x x x xdx x x dx x x x x dx x x x x dx x x x − + − − − = + − + − + = + − − + +−+ = + − − + − 1 7 9 ln ln 2 1 ln 2 1 4 16 16 = + − − − + + x x x x c ; (25) 2 4 2 2 5 5 6 x dx x x − − + 2 2 1 1 2 3 dx x x = + − − 1 1 1 1 1 1 2 2 2 2 2 3 3 3 dx dx x x x x = − + − − + − + 1 2 1 3 ln ln 2 2 2 2 3 3 x x c x x − − = + + + + . * 2 . 若 f x( ) 的导函数是 sin x ,求 f x( ) 的全体原函数. 解:因为 f x( ) 的导函数是 sin x ,即 f x x ( ) = sin ,有 1 f x xdx x c ( ) sin cos = = − + f x dx x c dx x c x c ( ) cos sin = − + = − + + ( 1 1 2 ) . * 3 . 求 x x dx . 解:当 x 0 时, 2 3 1 3 x x dx x dx x c = = + 当 x 0 时, 2 3 1 3 x x dx x dx x c = − = − + . * 4 . 求 1 cos 1 cos2 x dx x − − . 解: 1 cos 1 cos 2 x dx x − − 2 1 cos 2sin x dx x − =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 长春大学:《高等数学》课程作业习题(微积分)第二章 导数与微分总习题、自测题及其详解.doc
- 长春大学:《高等数学》课程作业习题(微积分)第三章 中值定理与导数的应用总习题、自测题及其详解.doc
- 长春大学:《高等数学》课程作业习题(微积分)第一章 函数与极限总习题、自测题及其详解.doc
- 长春大学:《高等数学》课程作业习题(概率论与数理统计)第四章 随机变量的数字特征与极限定理总习题与详解.docx
- 长春大学:《高等数学》课程作业习题(概率论与数理统计)第二章 随机变量及其分布总习题、自测题及其详解.docx
- 长春大学:《高等数学》课程作业习题(概率论与数理统计)第一章 随机事件及其概率总习题、自测题及其详解.docx
- 长春大学:《高等数学》课程教学大纲.doc
- 长春大学:《高等数学》课程教学资源(授课教案)线性代数教案(任课教师:许莹).doc
- 长春大学:《高等数学》课程教学资源(授课教案)线性代数教案(任课教师:朱天晓).doc
- 长春大学:《高等数学》课程教学资源(授课教案)概率论与数理统计教案(任课教师:许莹).doc
- 长春大学:《高等数学》课程教学资源(授课教案)概率论与数理统计教案(任课教师:朱天晓).doc
- 长春大学:《高等数学》课程教学资源(授课教案)微积分教案(任课教师:肖桂荣).doc
- 长春大学:《高等数学》课程教学资源(授课教案)微积分教案(任课教师:王羽).doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)2011年3月全国计算机等级考试二级VFP笔试试题.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)2010年9月全国计算等级考试二级VFP笔试试题及答案.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)2010年3月全国计算机等级考试二级真题-VFP.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)2009年9月全国计算机等级考试二级VF笔试真题及答案.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)2009年3月全国计算机等级考试二级VFP笔试真题及答案.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(试卷习题)VFP程序设计复习题集及答案.doc
- 铜陵学院数学与计算机学院:《数据库原理及应用》课程教学资源(教案讲义)第9章 报表和标签.doc
- 中国矿业大学:《高等数学》课程教学资源(教案讲义)泰勒公式.pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题一(题目).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题一(答案).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题二(题目).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题二(答案).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题三(题目).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题三(答案).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题四(题目).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题四(答案).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题五(题目).pdf
- 中国矿业大学:《运筹学》课程教学资源(作业习题)测试题五(答案).pdf
- 中国矿业大学:《运筹学》课程教学资源(知识名)名词解释.pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 1 线性规划(Linear Programming).pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 2 对偶理论(Duality Theory).pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 3 运输规划(Transportation Problem).pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 4 目标规划(Goal programming).pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 5 整数规划(Integer Programming).pdf
- 中国矿业大学:《运筹学》课程教学课件(讲稿)Chapter 8 图与网络分析.pdf
- 中国矿业大学:《线性代数》课程教学课件(讲稿)第一章 线性方程组.pdf
- 中国矿业大学:《线性代数》课程教学课件(讲稿)第二章 矩阵.pdf
