香港科技大学:Finding Competitive Price(寻找竞争价格)

Finding Competitive Price Yu Peng(hong Kong University of Science and Technology Raymond Chi-Wing Wong(Hong Kong University of Science and Technology Presented by Ted Prepared by Raymond Chi-Wing Wong
1 Finding Competitive Price Yu Peng (Hong Kong University of Science and Technology) Raymond Chi-Wing Wong (Hong Kong University of Science and Technology) Presented by Ted Prepared by Raymond Chi-Wing Wong

Outline 1 Introduction 2. Problem definition 3. Algorithm Spatial approach 4. Discussion 5. Empirical Study 6. Related work 7. Conclusion
Outline 1. Introduction 2. Problem Definition 3. Algorithm ◼ Spatial Approach 4. Discussion 5. Empirical Study 6. Related Work 7. Conclusion 2

1 Introduction Consider that a customer looks for a hotel near to sea World hotels H= thi, h2, h3, h4 A={a1} attraction-site(e. g. Sea World) Spatial layout Price Decision-Making table Hotel Distance-to- Price() Hotel Prices) SeaWorld (km) 100 3.0 250 1.0 250 h3200h3 4.0 200 220 2.5 220 According to the spatial layout and the price information we can generate a decision table
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 3 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table According to the spatial layout and the price information, we can generate a decision table. Consider that a customer looks for a hotel near to Sea World 3

1 Introduction Consider that a customer looks for a hotel near to sea World hotels H= thi, h2, h3, h4 A={a1} attraction-site(e. g. Sea World) Spatial Layout Price Decision-Making table Hotel Distance-to- Price() Hotel Price (S h SeaWorld (km) 100 3.0 100 250 1.0 250 a 200 4.0 200 220 2.5 220 h, dominates h3(since h, is better than h in terms of distance-to SeaWorld and Price)
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 4 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a customer looks for a hotel near to Sea World h1 dominates h3 (since h1 is better than h3 in terms of Distance-toSeaWorld and Price)

1 Introduction Consider that a customer looks for a hotel near to sea World hotels H= thi, h2, h3, h4 A={a1} attraction-site(e. g. Sea World) Spatial Layout Price Decision-Making table Hotel Distance-to- Price() Hotel Price (S h SeaWorld (km) 100 3.0 100 50 1.0 250》 a 200 h3 4.0 200 220 2.5 220 h, does not dominate h3(since h has a shorter distance to-SeaWorld than h3 but h 2 has a higher price than h3) 5
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 5 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a customer looks for a hotel near to Sea World h2 does not dominate h3 (since h2 has a shorter Distanceto-SeaWorld than h3 but h2 has a higher price than h3 .)

1 Introduction Consider that a customer looks for a hotel near to sea World hotels H= thi, h2, h3, h4 A={a1} attraction-site(e. g. Sea World) Spatial Layout Price Decision-Making table Hotel Distance-to- Price() Hotel Price (S h SeaWorld (km) 100 3.0 h3 is dominated by h1 1.0 250 00 a set of all"best"possible hotels 220 2.5 220 skyline: a set of hotels which are not Skyline thy, h2, h4l dominated by other hotels
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 6 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a customer looks for a hotel near to Sea World Skyline: a set of hotels which are not dominated by other hotels Skyline = {h1 , h2 , h4} h3 is dominated by h1 A set of all “best” possible hotels

1 Introduction Consider that a new company wants to open a new hotel h hotels H=th1, h2,h3, h, h) A={a1} attraction-site(e. g. Sea World) Spatial layout Price Decision-Making table Hotel Distance-to- Price() Hotel Prices) SeaWorld(km) 100 3.0 250 1.0 250 200 hb4h 4.0 200 220 2.5 220 ? 2.0 How can we set the price of hf?
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 7 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a new company wants to open a new hotel hf hf , hf} hf ? hf 2.0 ? How can we set the price of hf?

1 Introduction Consider that a new company wants to open a new hotel h hotels H=th1, h2,h3, h, h) A={a1} attraction-site(e. g. Sea World) Spatial layout Price Decision-Making table Hotel Distance-to- Price() Hotel Prices) SeaWorld (km) 100 30 100 250 1.0 250 200 h 4.0 200 220 2.5 220 h 2.0 300 hf is dominated by h2 $300 is not a competitive price. 8
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 8 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a new company wants to open a new hotel hf hf , hf} hf ? hf 2.0 ? 300 hf is dominated by h2 . $300 is not a competitive price

Problem(Finding Simple Competitive Price): Given a set of existing hotels and a new hotel h what greatest possible price can we set for hf such that h is in the skyline? 1 Introduction Consider that a new company wants to open a new hotel h hotels A={a1} attraction-site(e. g. Sea World) Spatial layout Price Decision-Making table Hotel Distance-to- Price() Hotel Prices) SeaWorld (km) 100 3.0 250 1.0 250 200 4.0 200 220 2.5 220 ? 2. 230 hf is not dominated by any hotel $230 is a competitive price. 9
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 9 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a new company wants to open a new hotel hf hf , hf} hf ? hf 2.0 ? 230 hf is not dominated by any hotel. $230 is a competitive price. Problem (Finding Simple Competitive Price): Given a set of existing hotels and a new hotel hf , what greatest possible price can we set for hf such that hf is in the skyline?

Problem(Finding Simple Competitive Price): Given a set of existing hotels and a new hotel h what greatest possible price can we set for hf such that h is in the skyline? 1 Introduction Consider that a new company wants to open a new hotel h hotels H=th1, h2,h3, h, h) A={a1} attraction-site(e. g. Sea World) Spatial layout Price Decision-Making table In order to make sure that h is chosen by Hotel Distance-to- Price(s) customers with a higher probability SeaWorld(km) we would like to set the price of hf such that 3.0 1. h is in the skyline 1.0 250 2. h dominates at least K hotels where K is a 4.0 200 user parameter. 2.5 220 ? 2.0 230 hf does not dominate any hotel 10
1. Introduction Hotel Price ($) h1 100 h2 250 h3 200 h4 220 10 H = {h1 , h2 , h3 , h4} A = {a1} hotels attraction-site (e.g., Sea World) h4 a1 h2 h3 h1 Spatial Layout Price Hotel Distance-toSeaWorld (km) Price ($) h1 3.0 100 h2 1.0 250 h3 4.0 200 h4 2.5 220 Decision-Making Table Consider that a new company wants to open a new hotel hf hf , hf} hf ? hf 2.0 ? 230 hf does not dominate any hotel. In order to make sure that hf is chosen by customers with a higher probability, we would like to set the price of hf such that 1. hf is in the skyline 2. hf dominates at least K hotels where K is a user parameter. Problem (Finding Simple Competitive Price): Given a set of existing hotels and a new hotel hf , what greatest possible price can we set for hf such that hf is in the skyline?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《市场营销学》课程PPT教学课件:营销与消费者(消费者特征、消费者行为分析模式、购买行为类型及演变).ppt
- 《市场营销学》课程PPT教学课件:市场营销调研策划(含实训PPT).ppt
- 长春工业大学:《市场营销学》课程教学资源(PPT课件讲稿)第九章 促销策略.ppt
- 人力资源管理者和人力资源管理部门(PPT讲稿).ppt
- 上海师范大学商学院:《风险管理》课程教学资源(PPT课件)第4章 风险管理措施.ppt
- 《管理学》课程教学资源(PPT课件讲稿)第五章 管理的基本方法.ppt
- 山东英才学院:《国际贸易概论》课程教学资源(PPT讲稿)商务谈判课内实训.ppt
- 湖北汽车工业学院:《汽车营销》课程教学资源(PPT讲稿)汽车营销课程设计动员会.ppt
- 北京大学软件与微电子学院:项目整体管理(PPT讲稿)项目收尾.ppt
- PPT讲座:如何做好劳动人事争议调解工作.ppt
- 《组织行为学 Organizational Behavior》课程教学资源(PPT课件讲稿)第六章 激励.ppt
- 《管理学》课程教学资源(PPT课件讲稿)第十章 控制.ppt
- 黄河交通学院(郑州交通职业学院):做事能力训练(PPT讲稿).ppt
- 中国人民解放军国防大学联合作战学院(石家庄陆军指挥学院):《孙子兵法》课程介绍(PPT讲稿,授课人:张贵锁).ppt
- 《网络营销》课程PPT教学课件:第一章 网络营销概述(网络营销的理论基础).ppt
- 公共产品与税收政策(PPT讲稿)Public Goods and Tax Policy.ppt
- 全球化管理(PPT课件讲稿).ppt
- 会展现场服务策划与管理(PPT讲稿).ppt
- 《市场营销学》课程教学大纲.pdf
- 西南政法大学宣传画册.ppt
- 《旅游市场营销学》课程教学资源(PPT课件讲稿)第二章 旅游市场营销环境分析.ppt
- 《物业管理系统》课程PPT教学课件(讲稿)第九章 住宅小区物业管理系统的开发.ppt
- 《旅游管理》课程教学资源(PPT讲稿)饭店与住宿业、旅游交通、旅游业的产品.ppt
- 上海交通大学:领域专家(PPT讲稿)Domain Expert.pptx
- 旅游管理专业:《前厅服务与管理》课程教学电子教案(PPT课件,共十二章).ppt
- 《管理学原理》课程PPT教学课件:第二章 管理思想的发展.ppt
- 《市场营销学》课程PPT教学课件:第七章 市场营销调研与预测.ppt
- 《市场调查与预测 Marketing Research》课程教学资源(PPT课件讲稿)第四章 市场调查问卷设计.ppt
- 香港中文大学:United Grain Growers Enterprise Risk Management:A Case Study.ppt
- 西安电子科技大学经济与管理学院:《信息管理学》课程教学资源(PPT课件)第6章 企业信息管理.ppt
- 机械工业出版社:普通高等教育规划教材《市场营销学》课程教学资源(PPT课件)第八章 分销渠道策略.ppt
- 信息预警和公开:危机管理成功中不可或缺的因素(从三鹿集团“问题奶粉”事件说起).ppt
- 机械工业出版社:普通高等教育规划教材《市场营销学》课程教学资源(PPT课件)第十一章 市场营销计划、组织与控制.ppt
- 《公共行政学》课程教学资源(PPT课件讲稿)第十三章 财务行政.ppt
- 《西方管理思想史》课程教学大纲 The Evolution of Management Thought.pdf
- 《管理学》课程教学资源(PPT课件讲稿)第五章 管理的基本方法.ppt
- 《管理学原理与方法》课程教学资源(PPT课件讲稿)第七章 计划与计划工作.ppt
- 《管理学》课程教学资源(PPT课件讲稿)第三章 管理的基本原理.ppt
- 《物流管理学》课程教学资源(PPT讲稿)第一章 现代物流概述.ppt
- 《物流管理学》课程教学资源(PPT课件讲稿)库存管理.ppt