西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)PaperA and Model Answe_PaperA

Anhui University Semester 1, 2004-2005 Final Examination(Paper A Subject title Time allowed: 2 hours School or Department: Ma Student Name: Student number Seat Number Question No.12345678910 11 Referee Score Marks In question 1-6, please choose the correct answer(only one is correct) 1.(5 marks)Word” MATLAB” comes form (A Mathematics Laborator (B)Matrix Laboratory (C) Mathematica Laboratory (D) Maple Laboratory 2.(5 marks) The matrix 215 (A) a strictly diagonally dominant matrix; (B)not a strictly diagonally dominant matrix (C)a singular matrix; (D) a matrix whose determinant is equal to zero 3.(5 marks) The computational complexity of Gaussian elimination for solv- ing linear equation systems AX=B(A is N X N matrix)is (A)O(N),(B)O(N2),(C)O(N),(D)O(N) 4.(5 marks) Assume that f(r)is defined on [a, b, which contains equally spaced nodes Tk=.o+hk that f"(a) a,b polation polynomial P(x)=∑f(xk)L1.(x) to approximate f(r), then the error E1(r)is (A)O(1)(B)O(h)(C)O(h2)(D)O(h3) 5.(5 marks) Degree 4 Chebyshev Polynomial T4( )is
Anhui University Semester 1, 2004-2005 Final Examination (Paper A) Subject title: Time allowed: 2 hours School or Department: Major: Student Name: Student Number: Seat Number: Question No. 1 2 3 4 5 6 7 8 9 10 11 Referee Score Marks In question 1-6, please choose the correct answer (only one is correct) 1. (5 marks) Word ”MATLAB” comes form (A) Mathematics Laboratory (B) Matrix Laboratory (C) Mathematica Laboratory (D) Maple Laboratory 2. (5 marks) The matrix 4 −1 1 4 −8 1 −2 1 5 is (A) a strictly diagonally dominant matrix; (B) not a strictly diagonally dominant matrix; (C) a singular matrix; (D) a matrix whose determinant is equal to zero. 3. (5 marks) The computational complexity of Gaussian elimination for solving linear equation systems AX = B (A is N × N matrix) is (A) O(N), (B) O(N 2 ), (C) O(N 3 ), (D) O(N 4 ). 4. (5 marks) Assume that f(x) is defined on [a, b], which contains equally spaced nodes xk = x0 + hk. Additionally, assume that f 00(x) is continuous on [a, b]. If we use Lagrange interpolation polynomial P1(x) = X 1 k=0 f(xk)L1,k(x) to approximate f(x), then the error E1(x) is (A) O(1) (B) O(h) (C) O(h 2 ) (D) O(h 3 ) 5. (5 marks) Degree 4 Chebyshev Polynomial T4(x) is 1

a an odd function (B)an even function (C) not odd or even function,(D) both odd and even functi 6.(5 marks)Pade Approximation is (A) A rational polynomial approximation (B)A polynomial approximation (C) A triangular polynomial approximation (D) A linear function approximation 7.(15 marks) Use the false position method to find the root of x sin(a)-1=0 that is located in the interval 0, 2(the function sin(a)is evaluated in radians)
(A) an odd function, (B) an even function (C) not odd or even function, (D) both odd and even function 6. (5 marks) Pad´e Approximation is (A) A rational polynomial approximation (B) A polynomial approximation (C) A triangular polynomial approximation (D) A linear function approximation 7. (15 marks) Use the false position method to find the root of x sin(x)−1 = 0 that is located in the interval [0, 2] (the function sin(x) is evaluated in radians). 2

8.(15 marks) In the following linear equation systems 4x-y+z=7 4x-8y+z=-21 2x+y-52=15, tart with Po=(1, 2, 2), and use Gauss-Seidel iteration to find Pk for k= 1, 2 Will Gauss-Seidel iteration converge to the solution? 9.(15 marks) Consider y= f(r)= cos(a)over [0.0, 1.2. Use the three nodes o=0.0, 1=0.6, and 2= 1.2 to construct a quadratic interpolation polynomial P2(r)
8. (15 marks) In the following linear equation systems 4x − y + z = 7 4x − 8y + z = −21 −2x + y − 5z = 15, start with P0 = (1, 2, 2), and use Gauss-Seidel iteration to find Pk for k = 1, 2. Will Gauss-Seidel iteration converge to the solution? 9. (15 marks) Consider y = f(x) = cos(x) over [0.0, 1.2]. Use the three nodes x0 = 0.0, x1 = 0.6, and x2 = 1.2 to construct a quadratic interpolation polynomial P2(x). 3

10.(15 marks) Consider f(ar)=2+sin(2v). Use the composite Simpson rule with 1l sample points to compute an approximation to the integral of f(a)taken over [1, 6 11.(10 marks)Assume that g E Cla, b. If the range of the mapping y=g(a)satisfies y E a, b for all x E [a, b, then g has a fixed point in [a, b
10. (15 marks) Consider f(x) = 2+ sin(2√ x). Use the composite Simpson rule with 11 sample points to compute an approximation to the integral of f(x) taken over [1, 6]. 11. (10 marks) Assume that g ∈ C[a, b]. If the range of the mapping y = g(x) satisfies y ∈ [a, b] for all x ∈ [a, b], then g has a fixed point in [a, b]. 4
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)Appendix_An Introduction to MATLAB.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(试卷习题)各章习题与答案.pdf
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)附录——MATLAB入门简介.ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第6章 常微分方程数值解.ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第5章 数值积分与数值微分.ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第4章 插值方法.ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第3章 非线性方程与方程组的数值解法(非线性方程求根).ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第2章 线性方程组数值解法.ppt
- 西安建筑科技大学:《高等数学计算方法》课程电子教案(PPT教学课件)第1章 绪论(主讲:曲小刚).ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(电子教案,主讲教师:权豫西).doc
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)实验3 孟德尔遗传定律.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)实验2 报童的策略.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)实验1 投针试验.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第9章 假设检验 9.3 总体分布的假设检验.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第9章 假设检验 9.2 正态总体参数的假设检验.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第9章 假设检验 9.1 假设检验的基本概念.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第8章 参数估计 8.3 参数的区间估计.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第8章 参数估计 8.2 估计量的评价标准.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第8章 参数估计 8.1 参数的点估计.ppt
- 西安建筑科技大学:《概率论与数理统计》课程教学课件(PPT讲稿)第7章 样本与抽样分布 7.3 正态总体的抽样分布.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)PaperA and Model Answe_Model Answer for Paper A.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)Chapter 1 The Solution of Nonlinear Equations f(x)= 0.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)Chapter 2 The Solution of Linear Systems.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)Chapter 3 Interpolation and Polynomial Approximation.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(教材讲义)Chapter 4 Numerical Integration.pdf
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 1.1 Iteration for Solving.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 1.2 Bracketing Methods for Locating a Root.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 1.3 Initial Approximation and Convergence Criteria.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 1.4 Newton-Raphson and Secant Methods.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 2.1 Introduction to Vectors and Matrices 2.2 Properties of Vectors and Matrices 2.3 Upper-triangular Linear Systems.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 2.4 Gaussian Elimination and Pivoting 2.5 Triangular Factorization.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 2.3 2.6 Iterative Methods for Linear Systems.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.1 Taylor Series and Calculation of Functions.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.2 Introduction to Interpolation.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.3 Lagrange Approximation.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.4 Newton Polynomial.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.5 Chebyshev Polynomials(Optional).ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 3.6 Padé Approximation.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 4.1 Introduction to Quadrature.ppt
- 西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 4.2 Composite Trapezoidal and Simpson’s Rule.ppt