中国高校课件下载中心 》 教学资源 》 大学文库

西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 4.1 Introduction to Quadrature

文档信息
资源类别:文库
文档格式:PPT
文档页数:12
文件大小:518.5KB
团购合买:点击进入团购
内容简介
西安建筑科技大学:《高等数学计算方法》课程教学资源(PPT课件讲稿)Chapter 4.1 Introduction to Quadrature
刷新页面文档预览

Chapter 2 Numerical Integrato

Chapter 2 Numerical Integration

3 Φ(5)=Jet dt≈4.8998922 y=f(t) Figure 2.1 Figure 2.1 Area under the curve y=f(t) for0<t<5

figure2 1 Values of重(x) 重(x) 1.00.2248052 2.01.1763426 3.02.5522185 4.03.8770542 5.048998922 6.055858554 7.06.0031690 8.06.2396238 9.06.3665739 10.06.4319219

2. 1 Introduction to Quadrature

2.1 Introduction to Quadrature

Definition 2. 1 Suppose that a=.0 1<.<M=b. A fo ormula of the form Q=∑(x)=0(0)+-n,()+…+f(mM)(21) with the property that f(x)dm=Q月+E[升 2.2) is called a numerical integration or quadrature formula. The term E()is called the truncation error for integration. The values ak ko are called the quadrature nodes, and fwk ko are called the weights

Definition 2.2. The degree of precision of a quadrature formula is the positive integer n such that E[P=0 for all polynomials Pi(a)of degree i< n, but for which E[Pn+#0 for some polynomial Pn+1(a) of degree m+1

Theorem 2.1(Closed Newton-Cotes Quadrature Formula). Assume that k =co+ kh are equally spaced nodes and fr= f(k). The first fo our closed Newton-Cotes quadrature formulas are 1 f(x)da≈x(fo+f1) (the trapezoidal rule) f(a)d. c s(fo +4f1+f2)(Si lmpson s rule (2.5) 厂f 3h (a)d ac a o(fo+3f 1+3f2+ f3)(Simpsons grule),(2.6) 2h f(x)dr≈:(7+32f1+12f2+32g+7f4)( Boole rule.(2.7) Figure 2.2(a) The trapezoidal rule integrates(b) Sinpson's rule integrates(c) Simpsons rule integrates(d) Boole's rule integrates

Corollary 2. 1(Newton-Cotes Precision). Assume that f(a)is sufficiently differentiable; then E[f] for Newton-Cotes quadrature involves an appropriate higher derivative. The trapezoidal rule has degree of precision n= 1. If f∈Ca,b],then f (a d r=o(o +f1)-of)(c) 2.8 Simpson's rule has degree of precision n=3. If f E C4a, b],then f(x)=(+4f1+f2)-of(c) 2.9 Simpson's rule has degree of precision =3. If f E C[a, b],then °f(x)=8(fo+3+3+3) 3h 3h (A)(C) 2.10 Boole's rule has degree of precision n= 5, If f E Cola, b, then 2h 8 f(a)d=45(7+32h+1212+32+7 f(6)(c).(2.11) 945

Example 2. 1. Consider the function f(a)=1+e-sin(4. e equally spaced spaced quadrature nodes o =0.0, 31=0.5, 2=1.0, 33=1.5 and a4= 2.0, and the corresponding function values fo= 1.00000, f2 0. 72159, f3=0.93765, and f4= 1. 13390. Apply the various quadrature for- mulas(2. 4)through(2.7)

Example 2. 2 Consider the integration of the function f(a)=1+e- sin(4. over the fixed interval a, b=[0, 1. Apply the various formulas(2.4)through 2.7

共12页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档