中国高校课件下载中心 》 教学资源 》 大学文库

《材料表面与界面》课程教学资源(PPT课件)绪论、第1章 表界面基础知识

文档信息
资源类别:文库
文档格式:PPT
文档页数:61
文件大小:4.46MB
团购合买:点击进入团购
内容简介
《材料表面与界面》课程教学资源(PPT课件)绪论、第1章 表界面基础知识
刷新页面文档预览

Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process:Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite RGr0t2vol%C网 RGrO(0.3 vol%yCu 200 100 RGrO/C(BM) CNTCu得M.· Ding-Bang Xiong,Mu Cao,Qiang Guo,Zhanqiu Tan,Genlian Fan, Zhiqiang Li*,and Di Zhang* 口 State Key Laboratory of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240,China ▣ ACS Nand0,2015,9(7),pp6934-6943

Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite  Ding-Bang Xiong, Mu Cao, Qiang Guo, Zhanqiu Tan, Genlian Fan, Zhiqiang Li*, and Di Zhang*  State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China  ACS Nano, 2015, 9 (7), pp 6934–6943 1

ACS Publications High quality High impact. (a) (d) Copper mortar fir wood ◆RGrO brick Chemical replication RGrO-and-Copper Nacre (b) (c) copper 空名安 怒8空【 GrO absorption and reduction Hot-pressing Schematic representation of fabricating RGrO-and-copper artificial nacre.(a)Ordered porous structure in natural fir wood.(b)Replicating the porous structure of fir wood with Cu.(c)Hot-pressing porous Cu preform absorbed with RGrO.(d)RGrO-and-Copper nacre consisting of RGro "brick"and copper"mortar". Published in:Ding-Bang Xiong;Mu Cao;Qiang Guo;Zhanqiu Tan;Genlian Fan;Zhiqiang Li;Di Zhang;ACS Nano 2015,9, 6934-6943. D0I:10.1021/acsnano.5b01067 Copyright 2015 American Chemical Society

Schematic representation of fabricating RGrO-and-copper artificial nacre. (a) Ordered porous structure in natural fir wood. (b) Replicating the porous structure of fir wood with Cu. (c) Hot-pressing porous Cu preform absorbed with RGrO. (d) RGrO-and-Copper nacre consisting of RGrO “brick” and copper “mortar”. Published in: Ding-Bang Xiong; Mu Cao; Qiang Guo; Zhanqiu Tan; Genlian Fan; Zhiqiang Li; Di Zhang; ACS Nano 2015, 9, 6934-6943. DOI: 10.1021/acsnano.5b01067 Copyright © 2015 American Chemical Society

(a ACS Publications High quality High impact. 5μm 200μm (b) cm 5μm 200μm (a)Layered porous structure of fir wood(the wood was carbonized for SEM observation).(b)Monolithic fir- templated porous Cu preform with a typical size of 2 x 1.5 x 1.5 cm3.High and low magnification SEM images indicate a good replication of the microstructure of fir wood. Published in:Ding-Bang Xiong;Mu Cao;Qiang Guo;Zhanqiu Tan;Genlian Fan;Zhiqiang Li;Di Zhang;ACS Nano 2015,9, 6934-6943. D01:10.1021/acsnano.5b01067 Copyright 2015 American Chemical Society

(a) Layered porous structure of fir wood (the wood was carbonized for SEM observation). (b) Monolithic fir￾templated porous Cu preform with a typical size of 2 × 1.5 × 1.5 cm3. High and low magnification SEM images indicate a good replication of the microstructure of fir wood. Published in: Ding-Bang Xiong; Mu Cao; Qiang Guo; Zhanqiu Tan; Genlian Fan; Zhiqiang Li; Di Zhang; ACS Nano 2015, 9, 6934-6943. DOI: 10.1021/acsnano.5b01067 Copyright © 2015 American Chemical Society

ACS Publications High quallty High impact. Fracture surface of(a,b)pure copper,(c,d)0.3 vol RGrO-and-Cu nacre,and(e,f)1.2 vol RGrO-and-Cu nacre with low magnification in the left column and high magnification in the right column.Scale bar:(a,c,e) 30 jm;(b,d,f)3 jm.The white arrows illustrate the location of RGrO on the fracture surface,and white circles indicate typical ductile fracture area of copper"mortar". Published in:Ding-Bang Xiong;Mu Cao;Qiang Guo;Zhanqiu Tan;Genlian Fan;Zhiqiang Li;Di Zhang;ACS Nano 2015,9, 6934-6943. D0I:10.1021/acsnano.5b01067 Copyright 2015 American Chemical Society

Fracture surface of (a,b) pure copper, (c,d) 0.3 vol % RGrO-and-Cu nacre, and (e,f) 1.2 vol % RGrO-and-Cu nacre with low magnification in the left column and high magnification in the right column. Scale bar: (a,c,e) 30 μm; (b,d,f) 3 μm. The white arrows illustrate the location of RGrO on the fracture surface, and white circles indicate typical ductile fracture area of copper “mortar”. Published in: Ding-Bang Xiong; Mu Cao; Qiang Guo; Zhanqiu Tan; Genlian Fan; Zhiqiang Li; Di Zhang; ACS Nano 2015, 9, 6934-6943. DOI: 10.1021/acsnano.5b01067 Copyright © 2015 American Chemical Society

(a) 05m 05m 5些" ▣ Figure 5.TEM images of(a)unreinforced copper matrix,(b) 0.3 vol RGrO-and-Cu nacre,and (c)1.2 vol RGrO-and- Cu nacre,showing equiaxed grain in unreinforced copper matrix and lamellar structure in RGrO-and-Cu artificial nacres.5

 Figure 5. TEM images of (a) unreinforced copper matrix, (b) 0.3 vol % RGrO-and-Cu nacre, and (c) 1.2 vol % RGrO-and￾Cu nacre, showing equiaxed grain in unreinforced copper matrix and lamellar structure in RGrO-and-Cu artificial nacres. 5

(a) RGrO(1.2 vol.%)/Cu ACS Publications 89 High quality High impact. RGrO(0.3 vol.%)/Cu 200 Cu 100 0 0.00 0.05 0.10 0.150.20 0.25 Engineering strain 200 b f.34) 8 150 'S'A u!juawejou 100 RGrO/Cu(M.L.M. CNT/Cu(M.LM.Rei.32 RGrO/Cu(B.M.Ref.33) TiB./Cu(Ref.30) ■ CNT/Cu.(B.M.Ref.31) 0 0 23456789 10 Reinforcement Volume Fraction(%) (a)Tensile stress-strain curves ot the RGru-and-Cu nacres,and (b)Strengthening efficiency of various reinforments in Cu matrix composites.Ordinate is the increment in percentage of yield strength;B.M.:ball milling process;M.L.M.molecular level mixing process. Published in:Ding-Bang Xiong;Mu Cao;Qiang Guo;Zhanqiu Tan;Genlian Fan;Zhiqiang Li;Di Zhang;ACS Nano 2015,9, 6934-6943. D0I:10.1021/acsnano.5b01067 Copyright 2015 American Chemical Society

(a) Tensile stress–strain curves of the RGrO-and-Cu nacres, and (b) Strengthening efficiency of various reinforments in Cu matrix composites. Ordinate is the increment in percentage of yield strength; B.M.: ball￾milling process; M.L.M.: molecular level mixing process. Published in: Ding-Bang Xiong; Mu Cao; Qiang Guo; Zhanqiu Tan; Genlian Fan; Zhiqiang Li; Di Zhang; ACS Nano 2015, 9, 6934-6943. DOI: 10.1021/acsnano.5b01067 Copyright © 2015 American Chemical Society

Pull-out (a) (c) Fracture d 300m Fracture 3μm Crack deflection 5 um ▣ Figure 7.(a)The specimen of 1.2 vol RGrO-and-Cu nacre after fracture.(b)RGrO pull-out(with smooth edge)and fracture(with torn edge)modes observed at fractured surface.(c)Schematic representation of failure modes of the RGrO.(d)Stepwise fracture parallel to the layers indicating an effective deflection of crack propagating along the RGrO-Cu interface and (e) enlargement of the box marked in image (d).(f)Schematic 7 presentation for crack deflection

 Figure 7. (a) The specimen of 1.2 vol % RGrO-and-Cu nacre after fracture. (b) RGrO pull-out (with smooth edge) and fracture (with torn edge) modes observed at fractured surface. (c) Schematic representation of failure modes of the RGrO. (d) Stepwise fracture parallel to the layers indicating an effective deflection of crack propagating along the RGrO-Cu interface and (e) enlargement of the box marked in image (d). (f) Schematic presentation for crack deflection. 7

6O] 034nm 311 -220 ,200 111 500nm 10nm 2 4 6 BKoV Figure 8.(a)Typical interfacial structure in the specimen of 1.2 vol RGrO-and-Cu nacre.(b)Area marked in (a)with higher magnification, and clear interface between graphene and Cu can be observed.(c)TEM analysis for 1.2 vol RGrO-and-Cu nacre after fracture.Copper nanoparticles were observed on delaminated RGrO,indicating goods interfacial bonding between RGrO and copper matrix

 Figure 8. (a) Typical interfacial structure in the specimen of 1.2 vol % RGrO-and-Cu nacre. (b) Area marked in (a) with higher magnification, and clear interface between graphene and Cu can be observed. (c) TEM analysis for 1.2 vol % RGrO-and-Cu nacre after fracture. Copper nanoparticles were observed on delaminated RGrO, indicating good interfacial bonding between RGrO and copper matrix. 8

工业触媒 104 102 触媒实验 10-2 应用袭面科学 10- 10-4 纯表面 科学 10-0 单晶 多品 微粒子,超微粒于 胶体 图1出前表面研究的主要领域 11

11

绪论 口材料科学、信息科学和生命科学是当前新 技术革命中的三大前沿科学,材料的表界 面在材料科学中有重要的地位 ▣材料表界面对材料整体性能具有决定性影 响,材料的腐蚀、老化、硬化、破坏、印 刷、涂膜、粘结、复合等等,无不与材料 的表界面密切有关。 13

13 绪论  材料科学、信息科学和生命科学是当前新 技术革命中的三大前沿科学,材料的表界 面在材料科学中有重要的地位  材料表界面对材料整体性能具有决定性影 响,材料的腐蚀、老化、硬化、破坏、印 刷、涂膜、粘结、复合等等,无不与材料 的表界面密切有关

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档