新泽西州立罗格斯大学:The Strange Link between Incompressibility and Complexity

The Strange Link between Incompressibility and Complexity Eric Allender Rutgers University China Theory Week, Aarhus August 13, 2012
Eric Allender Rutgers University The Strange Link between Incompressibility and Complexity China Theory Week, Aarhus August 13, 2012

Today's Goal: > To present new developments in a line of research dating back to 2002, presenting some unexpected connections between Kolmogorov Complexity( the theory of randomness), and Computational Complexity Theory )Which ought to have nothing to do with each other! Eric Allender. The Strange Link between Incompressibility and Complexity 2>
Eric Allender: The Strange Link between Incompressibility and Complexity Today’s Goal: To present new developments in a line of research dating back to 2002, presenting some unexpected connections between – Kolmogorov Complexity (the theory of randomness), and – Computational Complexity Theory Which ought to have nothing to do with each other!

Complexity Classes EXPSPACE NEXP PSPACE NP P/poly BPP P Eric Allender. The Strange Link between Incompressibility and Complexity
Eric Allender: The Strange Link between Incompressibility and Complexity Complexity Classes P NP BPP PSPACE NEXP EXPSPACE P/poly

A Jewel of derandomization >[Impagliazzo, Wigderson, 1997]: If there is a problem computable in time 2n that requires circuits of size 2En then p= BPP Eric Allender. The Strange Link between Incompressibility and Complexity 4>R
Eric Allender: The Strange Link between Incompressibility and Complexity A Jewel of Derandomization [Impagliazzo, Wigderson, 1997]: If there is a problem computable in time 2n that requires circuits of size 2εn , then P = BPP

Randomness > Which of these sequences did I obtain by flipping a coin? 0101010101010101010101010101010 0110100111111100111000100101100 1101010001011100111111011001010 1=0.3183098861837906715377675267450 >Each of these sequences is equally likely, in the sense of probability theory - Which does not provide us with a way REaRer Ie t o talk about, "randomness".<5 RUGERS
Eric Allender: The Strange Link between Incompressibility and Complexity Randomness Which of these sequences did I obtain by flipping a coin? 0101010101010101010101010101010 0110100111111100111000100101100 1101010001011100111111011001010 1/π =0.3183098861837906715377675267450 Each of these sequences is equally likely, in the sense of probability theory – which does not provide us with a way to talk about “randomness

Randomness > Which of these sequences did I obtain by flipping a coin? 0101010101010101010101010101010 0110100111111100111000100101100 1101010001011100111111011001010 1=0.3183098861837906715377675267450 > How many bits of information does each of these sequences contain? Eric Allender. The Strange Link between Incompressibility and Complexity
Eric Allender: The Strange Link between Incompressibility and Complexity Randomness Which of these sequences did I obtain by flipping a coin? 0101010101010101010101010101010 0110100111111100111000100101100 1101010001011100111111011001010 1/π =0.3183098861837906715377675267450 How many bits of information does each of these sequences contain?

Kolmogorov Complexity >C()=mind: U(d)=X U is a "universal Turing machine >K(x)= mind: U(d)=X U is a universal prefix-free Turing machine Important property Invariance: The choice of the universal Turing machine U is unimportant (up to an additive constant) x is random if o(x)≥x Eric Allender. The Strange Link between Incompressibility and Complexity R
Eric Allender: The Strange Link between Incompressibility and Complexity Kolmogorov Complexity C(x) = min{|d| : U(d) = x} – U is a “universal” Turing machine K(x) = min{|d| : U(d) = x} – U is a “universal” prefix-free Turing machine Important property – Invariance: The choice of the universal Turing machine U is unimportant (up to an additive constant). x is random if C(x) ≥ |x|

Kolmogorov Complexity >C()=mind: U(d)=X U is a "universal Turing machine >K(x)= mind: U(d)=X U is a universal prefix-free Turing machine Important property Invariance: The choice of the universal Turing machine U is unimportant (up to an additive constant) x is random if o(x)≥|x,orK(x)≥冈 Eric Allender. The Strange Link between Incompressibility and Complexity
Eric Allender: The Strange Link between Incompressibility and Complexity Kolmogorov Complexity C(x) = min{|d| : U(d) = x} – U is a “universal” Turing machine K(x) = min{|d| : U(d) = x} – U is a “universal” prefix-free Turing machine Important property – Invariance: The choice of the universal Turing machine U is unimportant (up to an additive constant). x is random if C(x) ≥ |x|, or K(x) ≥ |x|

KC and randomness >K(x and C(x) are close C(x)≤K()≤C(x)+2log|x Two notions of randomness Rc={:C(x)≥|X} Rk={x:K(x)≥} >.. actually, infinitely many notions of randomness R UX: Cu(x)2(] Eric Allender. The Strange Link between Incompressibility and Complexity R
Eric Allender: The Strange Link between Incompressibility and Complexity K, C, and Randomness K(x) and C(x) are “close”: – C(x) ≤ K(x) ≤ C(x) + 2 log |x| Two notions of randomness: – RC = {x : C(x) ≥ |x|} – RK = {x : K(x) ≥ |x|} …actually, infinitely many notions of randomness: – RCU = {x : CU(x) ≥ |x|}

KC and randomness >K(x and C(x) are close C(x)≤K()≤C(x)+2log|x Two notions of randomness Rc={:C(x)≥|X} Rk={x:K(x)≥} >.. actually, infinitely many notions of randomness RCu=(X: Cu()=Xl),RKu=(x: Ku(x)2xlh Eric Allender. The Strange Link between Incompressibility and Complexity 10>R
Eric Allender: The Strange Link between Incompressibility and Complexity K, C, and Randomness K(x) and C(x) are “close”: – C(x) ≤ K(x) ≤ C(x) + 2 log |x| Two notions of randomness: – RC = {x : C(x) ≥ |x|} – RK = {x : K(x) ≥ |x|} …actually, infinitely many notions of randomness: – RCU = {x : CU(x) ≥ |x|}, RKU = {x : KU(x) ≥ |x|}
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《大学物理》课程教学资源(PPT课件讲稿,力学)第七章 振动和波.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第17讲 静磁场 §2.3 稳恒磁场的矢势.ppt
- 湘潭大学:星际多环芳香烃:从芳香性、脂肪性到氢化和氘化芳香烃(Interstellar PAHs - from Aromacity, Aliphacity, to Superhydrogenation and Deuteration).pptx
- 合肥工业大学出版社:《电磁场与电磁波》课程教学资源(PPT课件讲稿)第五章 时变电磁场.ppt
- 中国科学院理论物理研究所:Natural Solution to the Supersymmetry Electroweak Fine-Tuning Problem(PPT讲稿).ppt
- 《普通物理实验》课程教学资源(PPT课件讲稿,电磁学部分,共十二个实验).ppt
- 《光电探测技术与系统》课程教学资源(PPT课件讲稿)第三章 光路分析与光学器件.ppt
- 《原子物理学》课程教学资源(PPT课件)第一章 原子的基本状况.ppt
- 清华大学:《粒子物理与核物理实验中的数据分析》课程教学资源(PPT讲稿)第十一讲:大作业介绍、计算机拟合方法(主讲:杨振伟).ppt
- 暗能量和宇宙学CPT破坏(PPT讲稿,南京大学物理系:李明哲).ppt
- 陇东学院:《电动力学 Electrodynamics》课程教学资源(教学大纲).pdf
- 《电动力学》课程教学资源:课程考试大纲.pdf
- 《普通物理实验》课程PPT教学课件(力学部分,共十一个实验).ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第一章 量子力学基础知识.ppt
- 《量子力学》课程教学资源(PPT课件讲稿)第二章 波函数和Schrodinger方程.ppt
- 《普通物理实验》课程教学课件(PPT讲稿)光学部分实验.ppt
- 《量子力学》课程教学资源(PPT课件讲稿)第三章 量子力学中的力学量.ppt
- 大学物理:《电动力学》课程教学资源(PPT课件讲稿)第二章 静电场 Electrostatic field.ppt
- 陇东学院:《电动力学 Electrodynamics》课程教学资源(PPT课件)第0章 预备知识——矢量场论复习(主讲:李高清)Preliminary Knowledge — Revise in the Vector Field Theory.ppt
- 《电磁场与电磁波》课程电子教案(PPT课件)第5章 均匀平面波在无界媒质中的传播.ppt
- 匀速运动点电荷产生的电磁场(PPT讲稿).ppt
- 西安电子科技大学:《数学物理方法概论》课程教学资源(PPT课件讲稿)第四章 格林函数.ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第2章 电磁场的基本规律.ppt
- 中国科学技术大学:半导体薄膜的制备和性能测试实验的特殊性及教学尝试(PPT讲稿).ppt
- 《电动力学》课程教学资源(PPT课件讲稿)第一章 电磁现象的普遍规律.ppt
- 《热力学》课程PPT课件(物理统计)第六章 近独立粒子的最概然分布(主讲:姚兰芳).ppt
- 山东大学物理实验:光电效应测定普朗克常数(仿真实验).pdf
- 山东大学物理实验教学中心:绪论、实验的误差及数据处理基础知识.pdf
- 山东大学物理实验:常用测量器具及物理实验基本方法和技术.pdf
- 中国科学技术大学近代物理系:现代量子理论(菜根谭).pdf
- 北京大学物理学院基础物理实验教学中心:物理实验课程体系的探索与实践.pptx
- 《物理》:双光梳光谱学研究进展 Progress in dual-comb spectroscopy(中国科学院物理研究所).pdf
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第28讲 狭义相对论——相对论理论四维形式(主讲:宗福建).ppt
- 北京大学精品课程:平衡态半导体的物理基础(PPT课件讲稿).pdf
- 复旦大学物理学系国家级精品课程:《文科物理理论与实验——物理与文化》教学大纲(马世红).doc
- 重庆大学物理系(吴兴刚):Some new applications of the Principle of Maximum Conformality(PPT讲稿,英文).pptx
- 中国科学技术大学:《大学物理》课程教学资源(PPT课件)动能定理.ppt
- 西安电子科技大学:固体物理——布洛赫(Bloch)定理.ppt
- 西安电子科技大学:《固体物理》课程教学资源(PPT课件讲稿)第五章 晶体缺陷 §5-3 面缺陷与体缺陷.ppt
- 西安电子科技大学:《固体物理》课程教学资源(PPT课件讲稿)课堂讨论.ppt