山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 08 The Discrete Fourier Transform

Chapter 8 The Discrete Fourier Transform ◆8.0 Introduction 8.1 Representation of Periodic sequence: the Discrete Fourier Series(DFS) 8.2 Properties of the dFs 8. 3 The Fourier Transform of Periodic signal 98.4 Sampling the Fourier Transform 98.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform FT 8.6 Properties of the dt 98.7 Linear Convolution using the DFT 8. 8 the discrete cosine transform DCT
2 Chapter 8 The Discrete Fourier Transform ◆8.0 Introduction ◆8.1 Representation of Periodic Sequence: the Discrete Fourier Series (DFS) ◆8.2 Properties of the DFS ◆8.3 The Fourier Transform of Periodic Signal ◆8.4 Sampling the Fourier Transform ◆8.5 Fourier Representation of Finite-Duration Sequence: the Discrete Fourier Transform(DFT) ◆8.6 Properties of the DFT ◆8.7 Linear Convolution using the DFT ◆8.8 the discrete cosine transform (DCT)

Chapter 8 The Discrete Fourier transform 8.0 Introduction
3 Chapter 8 The Discrete Fourier Transform 8.0 Introduction

8.0 Introduction Discrete Fourier Transform(DFT) is Transform of finite duration sequence DFT corresponds to samples equally spaced in frequency, of the Discrete-time Fourier transform(DTFT) of the signal DFT is a sequence rather than a function of a continuous variable o
4 8.0 Introduction ◆Discrete Fourier Transform (DFT) is Transform of finite duration sequence. ◆DFT corresponds to samples, equally spaced in frequency, of the Discrete-time Fourier transform (DTFT) of the signal. ◆DFT is a sequence rather than a function of a continuous variable ω

8.0 Introduction Derivation and interpretation of dft is based on relationship between periodic sequence and finite-length sequences The Fourier series representation of the periodic sequence corresponds to the DFT of the finite-length sequence
5 8.0 Introduction ◆Derivation and interpretation of DFT is based on relationship between periodic sequence and finite-length sequences: ◆The Fourier series representation of the periodic sequence corresponds to the DFT of the finite-length sequence

8.1 Representation of Periodic Sequence: the discrete fourier series Given a periodic sequence x[n] with period N so that xn]=xntrN The fourier series representation can be written as x[n]= Xk]ej(2T/N)kn Fourier series representation of continuous-time periodic signals require infinitely many complex exponentials, for discrete-time periodic signals 2丌 (k+mn)n ,(2zm) k=0,1,2,…,N-1
6 ◆Fourier series representation of continuous-time periodic signals require infinitely many complex exponentials, ◆for discrete-time periodic signals: 8.1 Representation of Periodic Sequence: the Discrete Fourier Series ( ) 2 j k N N m n e + ◆The Fourier series representation can be written as 2 j kn N e = ( ) 2 2 j kn N j mn e e =

8.1 Representation of Periodic Sequence: the discrete Fourier series 2丌 (k+mn)n 2丌m ,k=0,1,2,…,N-1 Due to periodicity, we only need N complex exponentials for Fourier series representation of x[n] 2兀k 刘n=∑X[eN k Ankle N k=0 The Fourier series representation of periodic sequence x[n]
8 8.1 Representation of Periodic Sequence: the Discrete Fourier Series ◆Due to periodicity,we only need N complex exponentials 1 0 2 1 [ ] j N N k kn x n X k e N − = = 2 1 [ ] N k j kn x n X k e N = ( ) 2 j k N N m n e + ( ) 2 2 j kn N j mn e e = 2 j kn N e = , 0,1,2, , 1 k N = −

Discrete Fourier series pair 2丌 ◆ The fourier series:n=1∑[k]eN k=0 To obtain the Fourier series coefficients we multiply both sides(2m/ N)rn for0≤n≤N-1 and then sum both the sides we obtain ∑ x(n)en"=∑1∑x(k(krm 2丌 0 =0 k=0 2丌 ∑x(21e (k-r)n n=0
9 Discrete Fourier Series Pair ◆The Fourier series: 1 0 2 ( ) N n j n N r x n e − = − 0 1 1 0 2 ( ) ( ) 1 N n N k j k r n N N X k e − − = = − = ◆To obtain the Fourier series coefficients we multiply both sides by for 0nN-1 and then sum both the sides , we obtain j n (2 / ) N r e − 1 1 0 0 2 ( ) ( ) 1 n N k N j n N k r N X k e − − = = − = 1 0 2 1 [ ] j N N k kn x n e X k N − = =

Discrete Fourier series pair e点m(,kr=mN, n an intege 0. otherwise n=0 orthogonality of the complex exponentials Problem x(ne =∑(k)1 8.51 (k-r) 0 石N三X(+mN) (4)=∑(n)eNk=x() Periodic DFS N coefficients[n]=>X[k]e2r/n) k=0 The discrete Fourier series 10
10 Discrete Fourier Series Pair 1 0 2 1 ( ) N n j k r n N N e − = − = X( )r Problem 8.51 1 0 2 ( ) N n j n N r x n e − = − 0 1 1 0 2 ( ) ( ) 1 N n N k j k r n N N X k e − − = = − = 1, - , 0, k r mN m an integer otherwise = = (2 ) 1 / 0 1 [ ] j N N k kn x n e X N k − = = 1 0 2 ( ) N n j n N k x n e − = − X ( ) k = = X( ) r + mN The Discrete Fourier Series coefficients Periodic orthogonality of the complex exponentials. DFS r→k

8.1 Representation of Periodic equence: the Discrete Fourier Series a periodic sequence x[] with period N, [n]=x[n+rN] for any integer The Discrete Fourier series: =1 2丌 kn ∑X[k]e Synthesis equation k=0 ◆ Coefficients: 2丌 X()= Analysis r(n)eN equation n=0 12
12 8.1 Representation of Periodic Sequence: the Discrete Fourier Series ◆a periodic sequence x n with period N, x n x n rN for any integer r = + ◆The Discrete Fourier Series: 1 0 2 ( ) ( ) , N n j kn X k x n N e − = − = 1 0 2 1 [ ] , N k j kn N x n X k N e − = = Synthesis equation Analysis equation ◆Coefficients:

8. 1 Representation of periodic Sequence: the Discrete Fourier Series X[小]=∑川e j(2T/N) kn CThe sequence X k] is periodic with period N ¥0=X[M,X[=X[N+1 对k+N=∑小]e n=0 ∑划小e|e2=] n=0
13 8.1 Representation of Periodic Sequence: the Discrete Fourier Series ◆The sequence is X k periodic with period N X X X X 0 , 1 1 = = + N N ( ) 1 0 N 2 n j k n N N X k x n N e − = − + + = 1 0 2 N 2 n j kn N j n x n X k e e − = − − = = ( ) 1 0 2 N n j N kn X k x n e − = − =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《普通动物学》课程教学资源(PPT课件讲稿)第十七章 两栖纲(Amphibia).ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)细胞运输、细胞信号转导.ppt
- 广东工业大学:生命&环境演绎(PPT课件讲稿).ppt
- 形态学研究及其方法进展(PPT讲稿,主讲:宋天保).ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第三章 微生物的生长与代谢 第一节 微生物的营养与营养类型.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第五章 微生物在环境中的分布及其相互关系.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第一章 绪论(主讲:侯森).pptx
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第三章 微生物的生长与代谢 第三节 微生物的生长繁殖 第四节 环境因素对微生物的影响.ppt
- 暨南大学:《环境微生物学》课程教学资源(PPT课件讲稿)第四章 微生物的遗传与变异.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第三章 细胞生物学研究方法.ppt
- 细胞分裂(cell division)PPT课件讲稿.ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第十三章 细胞衰老与凋亡.ppt
- 《环境生物学》课程PPT教学课件(讲稿)第3章污染物的生物效应检测.ppt
- 中南民族大学:《药用植物学》课程PPT教学课件(实验讲稿)实验四 叶的外形、内部构造及繁殖器官观察.ppt
- 陇东学院:《植物学》课程电子教案(PPT课件讲稿)第二章 菌类(主讲:郭小强).ppt
- 沈阳农业大学:《生物统计学》课程实验指导(Excel篇).pdf
- 《脊椎动物学》课程教学资源(PPT课件讲稿)爬行纲 Reptilia.ppt
- 《药用植物学》课程教学资源(PPT课件讲稿)植物的组织.ppt
- 《遗传学》课程教学资源(PPT课件讲稿)第八章 数量性状遗传.ppt
- 厦门大学:荧光蛋白的研究进展(PPT讲稿)Deactivation Mechanism of the Green Fluorescent Chromophore.ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 03 Discrete-Time Signal processing(the Z-transform).ppt
- 《医学信号处理及应用》课程教学资源(PPT课件)第5章 生物医学信号处理.ppt
- 山东大学:《生物医学信号处理 Biomedical Signal Processing》精品课程教学资源(PPT课件讲稿)Chapter 07 Filter Design Techniques.pptx
- 《普通动物学》课程教学资源(PPT课件)假体腔动物 Pseudocoelomate.ppt
- 《生物学》课程电子教案(PPT课件讲稿)鱼类 Pisces.ppt
- 《中学生物学教学论》课程教学资源(PPT课件讲稿)第一章 中学生物学课程.ppt
- 陇东学院:《植物生物学 Plant Biology》课程教学资源(PPT课件讲稿)植物的组织和组织系统(主讲:郭小强).ppt
- 厦门大学:《动物生物学》课程教学资源(PPT课件讲稿)动物生物学教学实习——潮间带动物(图片版).ppt
- 《细胞生物学》课程教学资源(PPT课件讲稿)第一章绪论.ppt
- 《动物遗传学》课程教学资源(PPT课件讲稿)第五章 性别决定及与性别有关的遗传(2h).ppt
- 《生物化学》课程教学资源(PPT课件)第二十章 癌基因、抑癌基因与生长因子 Oncogenes, Anti-oncogenes and Growth Factors.ppt
- 《基因工程》课程教学资源(PPT课件讲稿)第七章 外源基因的表达及其优化策略.ppt
- 《遗传学》课程教学资源(PPT课件讲稿)重组子的筛选与鉴定.ppt
- 《基因工程》课程电子教案(PPT教学课件)第三章 基因工程载体.ppt
- 《遗传学》课程教学资源(PPT课件讲稿)第十四章 遗传与个体发育.ppt
- 《基因工程原理》课程教学资源(PPT课件讲稿)第八章 外源基因表达产物的分离纯化.ppt
- 《食用菌生物学》课程教学课件(PPT讲稿)食用菌生物学实验(共六个实验).ppt
- 《生物化学》课程电子教案(PPT教学课件)第十三章 基因表达调控 Regulation of Gene Expression.ppt
- 甘肃农业大学:《酶工程》课程教学资源(电子教案,共八章)Enzyme Engineering.pdf
- 《遗传学》课程教学课件(PPT讲稿)第三章 孟德尔遗传规律.ppt