四川大学物理学院:Optimizing pointer states for dynamical evolution of quantum correlations under decoherence

Optimizing pointer states for dynamical evolution of quantum correlations under decoherence Bo You, Li-Xiang Cen Department of Physics, SiChuan University
Optimizing pointer states for dynamical evolution of quantum correlations under decoherence Bo You,Li-xiang Cen Department of Physics, SiChuan University

Outline 1. Dissipative channels and pointer bases 2. Two different optimizations in relation to quantum discord 2. 1. Bell-diagonal state 2.2. two-qubit state of two ranks 3. Optimizing pointer bases to achieve maximal condition entropy
Outline 1.Dissipative channels and pointer bases 2. Two different optimizations in relation to quantum discord 2.1.Bell-diagonal state 2.2.two-qubit state of two ranks 3. Optimizing pointer bases to achieve maximal condition entropy

Dissipative channels and pointer bases .o Dynamical evolution under dissipative channel E(p()=∑E(O)p(0)E2() In this case of dephasing channel E1=m+)(+|+ypn)(n,E,= Pn-)(n2-| e o Pointer bases: selected by the system-environment coupling COS +e sin n=sin e cos 202
Dissipative channels and pointer bases ❖ Dynamical evolution under dissipative channel ❖ In this case of dephasing channel ❖ Pointer bases: selected by the system-environment coupling 1 2 , 1 , 1 .t E n n p n n E p n n p e + + − − − − − = + = − = − ( ) † ( ) ( ) (0) ( ) i i i = t E t E t cos 0 sin 1 2 2 sin 0 cos 1 . 2 2 i i n e n e + − = + = −

≈ Quantum discord: OD (PAB)=S(P)+min p s(pBliA-S(PAB Where S(p)=-Tr(plog2 p o Geometry measure of Quantum Discord min AB AB ZAB O e Where 2o is the set of zero-discord Entanglement of formation E(p)=min、E(v) (Pi 4 s where E(AB))=S(pA) H Ollivier and W.H. Zurek, PhysRevLett 88.017901 B. Dakic, V Vedral, and C. Brukner, Phys. Rev. Lett. 105, 190502
❖ Quantum discord: ❖ Where ❖ Geometry measure of Quantum Discord: ❖ Where is the set of zero-discord. ❖ Entanglement of formation: ❖ where ( ) ( ) min ( ) ( ) A i A A AB A i B A AB i QD S p S i S = + − S Tr ( ) = − ( log2 ) ( ) 0 2 min AB DA AB AB AB = − 0 H. Ollivier and W. H. Zurek, PhysRevLett.88.017901 B.Dakic,V.Vedral, and C. Brukner,Phys. Rev. Lett. 105, 190502 ( ) ( ) , min i i AB i AB i AB p E p E = ( ) ( ) i i E S AB A =

Schematic illustration: dependence of decoherence dynamics on pointer bases pAB=plv)(v1+(1-p)v2)(v2|12)=2(00±1) a Discord A 20 0.006 0004 0.000 0.00.5 01.520 b Information C EoF 1.0 2.0 0.8 0.6 0010 0.4 0.005 000.5 0.000 P15 2.0 0.00.5 1.5 2.0
Schematic illustration: dependence of decoherence dynamics on pointer bases

Motivation and main concerns go We investigate the dynamics of decorrelation under different choices of the pointer states of system reservoir couplings. In detail, we consider a two qubit system, initially prepared in certain states with non-zero quantum correlations, subjected to local dissipative channels responsible for various pointer states. Dynamical evolution of entanglement, quantum discord, and the mutual information sharing between the two qubits, is depicted. We elucidate various optimizations of the pointer states e.g., minimization and maximization of the conditional entropy, as well as the geometric optimization via minimizing discord, and analyze the properties of the corresponding behavior of decorrelation
❖ We investigate the dynamics of decorrelation under different choices of the pointer states of systemreservoir couplings. In detail, we consider a twoqubit system,initially prepared in certain states with non-zero quantum correlations, subjected to local dissipative channels responsible for various pointer states. Dynamical evolution of entanglement, quantum discord,and the mutual information sharing between the two qubits, is depicted. We elucidate various optimizations of the pointer states, e.g., minimization and maximization of the conditional entropy, as well as the geometric optimization via minimizing discord,and analyze the properties of the corresponding behavior of decorrelation. Motivation and main concerns

Case 1: Two different optimizations in relation to quantum discord It is proved that quantum discord and its geometry measure can be rewritten as OD, (PAB)=S(PA)+minXp s(p8lia-S(PAB AB PAB DA(PAB)=min PAB -xaB AB AB Where IIi is the projector state achieving the minimize herefore we could choose the two projector states as our optimal bases, so that we could get some physics about dissipate process with different optimizations S.L. Luo andss Fu, PhysRevA. 82.034302
Case 1: Two different optimizations in relation to quantum discord It is proved that quantum discord and its geometry measure can be rewritten as: Where is the projector state achieving the minimize. S.L. Luo and S.S. Fu,PhysRevA.82.034302 A i ( ) ( ) ( ) ( ) ( ) ( ) min A i A A AB A i B A AB i A A i i AB AB QD S p S i S I I = + − = − Therefore we could choose the two projector states as our optimal bases,so that we could get some physics about dissipate process with different optimizations. ( ) 0 2 2 min AB A AB AB AB A A i i AB AB D = − = −

Bell-diagonal states g We can express the state as o For Bell-diagonal state, the measurements for minimizing the quantum discord and geometry measure of QD can be easily calculated, which are the same that is (±a)/2,|=max() I±a,)/2 maX lc (±a3)/2,!=max(c Thus. the dynamic with the two optimizations is the same for Bell-diagonal states S.L. Luo, Phys. Rev. A77, 042303(2008)
Bell-diagonal states ❖ We can express the state as: ❖ For Bell-diagonal state, the measurements for minimizing the quantum discord and geometry measure of QD can be easily calculated, which are the same, that is: S.L.Luo,Phys. Rev. A 77, 042303 (2008) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 3 / 2, max / 2, max / 2, max i A i i I c c I c c I c c = = = = Thus, the dynamic with the two optimizations is the same for Bell-diagonal states

Two qubits state of two ranks The state express as PAC=|1)(1|+|2)(q2 Where 1 1)=Ao100 2}=A1ep0o)+A2|01+Aa210)+A4|1 o The minimizing discord can be obtained by purifying the state to a three-qubit pure state ABC)=A0|000+A1e010+A211) +Aa2110+1|11 Go In the state, the minimal conditional entropy of Ac system is equal to the entanglement of BC-system E(PBc)=min S(pcl L.X. Cen, et al., Phys. Rev. A 83, 054101(2011
❖ The state express as ❖ Where ❖ The minimizing discord can be obtained by purifying the state to a three-qubit pure state: ❖ In the state, the minimal conditional entropy of ACsystem is equal to the entanglement of BC-system: ( ) min ( ) BC C A A E S i = L.X.Cen, et.al., Phys. Rev. A 83, 054101 (2011) Two qubits state of two ranks

whErefore, the minimizing conditional entropy of Ac system could be obtained by calculating the EoF of BC- system Thus through the method conducted by l= Wootters(phys. rev. let 80.2245), the decomposition achieving the EoF can be deduced oo So the measurement corresponding to minimizing conditional entropy can be determined by 平A)=)= 令 Thus the measurement is:∏4=1(±e:o) , where e is the normalized vector and 0 2入2(X2+ =12×2(1c089+2入4) e3
❖ Therefore, the minimizing conditional entropy of ACsystem could be obtained by calculating the EoF of BCsystem. ❖ Thus through the method conducted by Wootters(phys.rev.let.80.2245),the decomposition achieving the EoF can be deduced. ❖ So the measurement corresponding to minimizing conditional entropy can be determined by: ❖ Thus the measurement is: ❖ where is the normalized vector , and i BC z i ABC A BC i = i z ( ) 1 2 A = I e e
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 安徽理工大学:《大学物理》课程教学资源(PPT课件)第十八章 量子物理基础 第三讲 量子力学应用初步.ppt
- 清华大学:Split Two-Higgs Doublet and Neutrino Condensation.ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第22章 量子力学基础 fundament of quantun mechanics.ppt
- 赣南师范大学(赣南师范学院):《光电子技术学》课程教学资源(PPT课件)光束的调制和扫描(光束扫描技术).ppt
- 中国科学技术大学:光流性能(PPT讲稿)Performance of Optical Flow.ppt
- 《大学物理》课程教学资源(PPT讲稿)第六章 热力学基础(热力学第一定律).ppt
- 西安电子科技大学物理与光电工程学院:电波传播基本概念(PPT课件).pptx
- 清华大学:粒子物理与核物理实验中的数据分析(PPT讲稿)基本概念.pptx
- 西安电子科技大学:《电波传播概论》课程教学资源(PPT课件讲稿)第一部分 电磁波理论基础 Fundamental of Electromagnetic Waves Propagation(主讲:李仁先).pptx
- 中科院高能物理研究所:四通道低噪声GEM探测器前端读出ASIC设计(吕继方).ppt
- 《量子力学》课程PPT教学课件:第五章 近似方法.ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第5章 均匀平面波在无界媒质中的传播.ppt
- 中国科学院理论物理所:Collider Phenomenology of SUSY Cosmic Connections(杨金民).ppt
- GRB的突发伽玛射线暴来自共振逆康普顿散射机制.ppt
- 原子的基本状况(PPT讲稿)α粒子散射理论.ppt
- 中国科技大学化学物理系:介观化学体系(PPT讲稿)非平衡非线性反应动力学.ppt
- 中国科学技术大学:生物大分子波谱学原理(全相关谱TOCSY、同核核磁实验方法).ppt
- 北京大学:格点上的赌博(PPT讲稿)格点场论介绍.ppt
- 《大学物理》课程PPT教学课件:周期性运动 periodic motion.ppt
- 湖北汽车工业学院:真空中静电场的高斯定理及其应用(PPT讲稿).ppt
- Non-photonic electron yields in p+p collisions at 200 GeV with reduced detector material in STAR.ppt
- 精密位移量的激光干涉测量方法及实验.ppt
- 电磁波(PPT讲稿)Electromagnetic wave.ppt
- 华东师范大学:低耦合阈值导致可激发系统的自维持振荡(王健雄).ppt
- 南开大学:《大学物理学基础》课程教学资源(PPT课件讲稿)第六章 机械振动和机械波(简谐振动).ppt
- 中国科学技术大学:《X射线光电子能谱学 X-Ray Photoelectron Spectroscopy》课程教学课件(原理、方法和应用)第1章 XPS的物理基础(主讲:麻茂生).pps
- 中国科学院:高能物理研究所的粒子物理研究 Particle Physics Research in Institute of High Energy Physics.ppt
- 清华大学:SUSY Higgs at the LHC plus a bit more.ppt
- 山东大学:Testing Realistic Seesaw Model at LHC(PPT讲稿,主讲人:郑亚娟).ppt
- 理论力学(PPT课件讲稿)哈密顿力学.ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第六章 静电场.ppt
- 《电动力学》课程教学资源:第三、四章 复习.ppt
- 《电磁学》课程教学资源(PPT讲稿)电磁感应习题解答.ppt
- 《大学物理》课程教学资源(PPT讲稿)复习资料(共九部分).ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第六章 平面电磁波.ppt
- 南京大学:Studies of Gamma-Ray Bursts in the Swift Era(PPT学术讲稿,戴子高).ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第9章 热力学基础 Fundament of thermodynamics.ppt
- 太原师范学院:本科毕业生教育实习教案(高二物理——交变电流的产生及变化规律).doc
- Anisotropic exactly solvable models in the cold atomic systems(PPT讲稿).ppt
- 《理论力学》课程教学资源(PPT电子讲义)哈密顿力学.ppt