Anisotropic exactly solvable models in the cold atomic systems(PPT讲稿)

Anisotropic exactly solvable models in the cold atomic systems Junpeng Cao Jiang, Guan, Wang lin
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao

Content Spin-1/2 bose gas IL. Spin-1 bose gas Spin-3/2 fermi gas
Content I. Spin-1/2 bose gas II. Spin-1 bose gas III. Spin-3/2 fermi gas

Anisotropic exactly solvable cold atomic model N amiltonian H a2+ Wi G x -x (pseudo-)spin Interaction symmetry ★00os0)g=c U(l)Lieb,eta,P130.605(1963 ★( fermion)go=c SU(2) Yang, PRL19.1312(1967) ★12(og SU(2)Li,EPL61.368(2003 12(boson) g1 81=c2810=0.U(1) ★1( boson) go=C,82=c SU(3)Zhou,JPA21.2391:2399(99 ■1(0m)80=-c,82=2c.SU(2)actE179300020 1( boson)800=c,g21=0.821=0 U() g 2.0 g ★1( fermion) SU(3) Sutherland. PRL2098(1968) ★32( mion)g=c,g2=c SU(4)Sutherland, PRL2098(1968) ■32(emin)8o=3c,g2=c Sp(4) Jiang, eta/, EPL87 10006(2009) 3/2( fermion)go0=0,g22=c1,g2=c2,U(1) g 0,g2.0=0,g2-1=0 Integer s(boson) 8o=-(s-1/2)c, g24.=c SO(2s +1)Jiang, et al, JPA44.345001(2011) Half-odd s(fermion)go=(S+3/2)C,82.4.=C. Sp(2s +1)Jiang et al, JPA44. 345001(2011)
Li, EPL 61. 368 (2003) Zhou, JPA 21. 2391; 2399 (1988) Anisotropic exactly solvable cold atomic model

I. Anisotropic spin-1/ 2 bose gas Anisotropic spin-exchanging interaction Motivation 1. Kondo problems: spin-1 fermions =∑。+∑(07+0+△076(x-x) Contact interaction: non-integrable Heisenberg long range interactions i e 1/r&1/r2: integrable Spin-1/2 bosons: non-integrable 2. Cold atoms: spin -12 bosons =-∑+∑ (CIi )6(x-x)+∑ i≠ 202+21+2++()0+(x=x)-
I. Anisotropic spin-1/2 bose gas Anisotropic spin-exchanging interaction Motivation 1. Kondo problems : spin-½ fermions Contact interaction: non-integrable; Heisenberg & long range interactions, i.e. 1/r & 1/r2 : integrable. 2. Cold atoms : spin-½ bosons Spin-1/2 bosons : non-integrable

Exact so|utⅰons Sab() k+ic ab kV2 b +po,o k-icI ali k-ic2 pl 1,0 ab tpab E=∑∑k-MF,K=∑∑k i=1j=1 i=lj=l N +Ic e kg-ko-ici j=1,2,…,N-M,讠=1,2 M2=(N1-N2)/2
Exact solutions

Densities distribution of quasi-momentum C1=1,c2=0.5,n=1andh=0. 0 Magnetization mz=(n1-12)/2 interaction 0.6 Spontaneous magnetization when h=o Phase transition from fully polarized 0.2 state to partially polarized state Critical points with strong repulsion hc+=m2n2-8m2n3/3c1, he=n2n2-8m2n3/3 -0.500.511.5 The critical points are different because the couplings cl and c2 are different
Densities distribution of quasi-momentum Magnetization Critical points with strong repulsion Spontaneous magnetization when h=0 Phase transition from fully polarized state to partially polarized state. The critical points are different because the couplings c1 and c2 are different. interaction

The pressures magnetization in the strong coupling limit h22 h n+ 12C1 (3n-57n2) 3n+5|+01/c2)+01/c2 12C2 h h mz= n+ 3n2 +O(1/c1)+O(1/c2) (b n=08 n=0.04 0 02 =n=0.8 n=0.6 n=0.04 10 0 510 10 0 h When the external field h is zero, the pressure takes its minimum. With the increasing h, the pressure increases. At the fully polarized state, the pressure arrives at its maximum
The pressures & magnetization in the strong coupling limit When the external field h is zero, the pressure takes its minimum. With the increasing h, the pressure increases. At the fully polarized state, the pressure arrives at its maximum

The ground state energy density 0.02 (上) 0.02 0.04 0.06 -0.08 n=1 -0.1 n=1 n=08 n=0.8 n=06 -0.12 =!=n=0.6 11n=0 -0.14 ……n=04 3 10 510 C1=100andc2=50 At the critical point, the second E=∑∑k-hM2 order derivative of the ground state i=1j=1 energy density is not continue, thus it is a second order phase transition
The ground state energy density At the critical point, the second order derivative of the ground state energy density is not continue, thus it is a second order phase transition

Entropy at finite temperature 0.1 0.6 008 05 006 04 03 004 0.2 002 0.1 -0.5 k0.5 15 C1=1,C2=0.5andn=1
Entropy at finite temperature

Dressed energy Ei(k)=TIn h()/ni(k) 0.4 (a) △E1 0.2 E2 0.8 △E2 C2=0.5 04 =1 0 2 0.5 0.5 k K/2 Strong repulsion E1(k)=k2-1-c17T32m12F1/2(u/T)+Oc12 Fermi-Dirac function (x)=T1(+1)0y/eyx+1dy
Dressed energy Strong repulsion Fermi-Dirac function
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 太原师范学院:本科毕业生教育实习教案(高二物理——交变电流的产生及变化规律).doc
- 《大学物理》课程教学资源(PPT课件讲稿)第9章 热力学基础 Fundament of thermodynamics.ppt
- 南京大学:Studies of Gamma-Ray Bursts in the Swift Era(PPT学术讲稿,戴子高).ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第六章 平面电磁波.ppt
- 《大学物理》课程教学资源(PPT讲稿)复习资料(共九部分).ppt
- 《电磁学》课程教学资源(PPT讲稿)电磁感应习题解答.ppt
- 《电动力学》课程教学资源:第三、四章 复习.ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第六章 静电场.ppt
- 理论力学(PPT课件讲稿)哈密顿力学.ppt
- 山东大学:Testing Realistic Seesaw Model at LHC(PPT讲稿,主讲人:郑亚娟).ppt
- 清华大学:SUSY Higgs at the LHC plus a bit more.ppt
- 中国科学院:高能物理研究所的粒子物理研究 Particle Physics Research in Institute of High Energy Physics.ppt
- 中国科学技术大学:《X射线光电子能谱学 X-Ray Photoelectron Spectroscopy》课程教学课件(原理、方法和应用)第1章 XPS的物理基础(主讲:麻茂生).pps
- 南开大学:《大学物理学基础》课程教学资源(PPT课件讲稿)第六章 机械振动和机械波(简谐振动).ppt
- 华东师范大学:低耦合阈值导致可激发系统的自维持振荡(王健雄).ppt
- 电磁波(PPT讲稿)Electromagnetic wave.ppt
- 精密位移量的激光干涉测量方法及实验.ppt
- Non-photonic electron yields in p+p collisions at 200 GeV with reduced detector material in STAR.ppt
- 四川大学物理学院:Optimizing pointer states for dynamical evolution of quantum correlations under decoherence.ppt
- 安徽理工大学:《大学物理》课程教学资源(PPT课件)第十八章 量子物理基础 第三讲 量子力学应用初步.ppt
- 《理论力学》课程教学资源(PPT电子讲义)哈密顿力学.ppt
- 中国科学技术大学:Dynamical decoupling in solids(PPT讲稿).ppt
- 太原师范学院:本科毕业生教育实习教案(高一物理——行星的运动).doc
- 香港科技大學:淺談流動電話網絡(李子健).ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第四章 恒定磁场(稳恒磁场).ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第二章 热力学第二定律、熵.ppt
- 北京科技大学:F玻色体系的铁磁(PPT讲稿)Ferromagnetism in Bose Systems.ppt
- 《费曼物理》课程PPT教学课件(英文版)Chapter 32 狭义相对论 Special Theory of Relativity.ppt
- 合肥学院:材料科学(材料物理与化学)教学资源(PPT讲稿)X射线衍射及其应用(高雅).ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第5章 刚体力学基础 Dynamics of Rigid Body.ppt
- 经典力学(动力学)课程教学资源(PPT讲稿)刚体转动习题解答.ppt
- 《大学物理》课程PPT教学课件:第一篇 力学 第一章 物体的运动规律.ppt
- 中国科学院理论物理研究所:变脸——中微子振荡(PPT讲稿,李淼).ppt
- Signal Processing for TPCs in High Energy Physics(Part I).ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第三篇 电磁场 Electromagnetic field 第14章 稳恒磁场 Steady magnetic field.ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第七章 稳恒磁场.ppt
- 赣南师范学院:《波动光学基本原理》课程教学资源(PPT课件)夫琅和费圆孔衍射、光的横波性与五种偏振态(物理与电子信息学院:王形华).ppt
- 《量子力学》课程教学资源(PPT课件讲稿)第二章 波函数及薛定谔方程.ppt
- 《电磁学》课程教学资源(PPT课件讲稿)第0章 矢量分析与数学准备.pptx
- 香港科技大学:脉冲双星(PPT讲稿).pps