《大学物理》课程PPT教学课件:周期性运动 periodic motion

Chapter 13 periodic motion Breaking glas A wineglass can be shattered by sound wave if the wave matches the ollapse of the Tacoma Narrows natural utor tIons the glass suspension bridge in America in 1940 p415
Chapter 13 periodic motion Collapse of the Tacoma Narrows suspension bridge in America in 1940 (p 415)

oscillation SHM Dam ped Forced oscillation oscillation dynamics kinematics Dynamic Kinematics Circle of equation equation reference Energy Superposition of shm
SHM dynamics kinematics Dynamic equation Circle of reference Kinematics equation oscillation Energy Superposition of shm Damped oscillation Forced oscillation

Chapter 13 periodic motion Key Terms periodic motion /oscillation restoring force Amplitude cycle Period Frequency angular frequency simple harmonic motion harmonic oscillator circle of reference Phasor phase angle simple pendulum
Key Terms: periodic motion / oscillation restoring force Amplitude cycle Period Frequency angular frequency simple harmonic motion harmonic oscillator circle of reference Phasor phase angle simple pendulum Chapter 13 periodic motion

Key Terms: physical pendulum Damping Damped oscillation Critical damping overdamping underdamping 〓〓〓 driving force forced oscillation natural angular frequency 删HH resonance chaotic motion chaos
Key Terms: physical pendulum Damping Damped oscillation Critical damping overdamping underdamping driving force forced oscillation natural angular frequency resonance chaotic motion chaos

1. Dynamic equation 1)dynamic equation Ideal model A spring mass system ∑F k x k k +x=0 d=x dt 2 m +02x=0 dt2 2丌 T x=AcOs(Ot+φ)
Ideal model: A. spring mass system 1) dynamic equation kx dt d x m F ma kx = − = = − 2 2 0 2 2 + x = m k dt d x x = Acos(t + ) 0 2 2 2 + x = dt d x m k = 2 T = 1. Dynamic equation

B The Simple Pendulum F = a -mg sing=m-2 s=LO mg sin 8 sindo 0\mg cos 6 Small angle approximation sine × d26 6=0 6=ocos(a+中)
Small angle approximation sin 0 2 2 + = L g dt d B. The Simple Pendulum 2 2 2 2 sin sin dt d g L s L dt d s mg m Ft mat − = = − = = cos( ) = 0 t + l g = 2

C. physical pendulum P409 ∑ t=la d26 mgd sin 8=l dt d6 mgd 6 dt o mod mg sin Ga中测mE
I mgd I mgd dt d dt d mgd I I = = − − = = 2 2 2 2 2 sin C. physical pendulum P409

Example: Tyrannosaurus rex and physical pendulum All walking animals, including humans, have a natural walking pace, a number of steps per minute that is more comfortable than a faster or slower pace. Suppose this natural pace is equal to the period of the leg, viewed as a uniform rod pivoted at the hip joint. A) How does the natural walking pace depend on the length L of the leg, measured from hip to foot? B )Fossil evidence shows that Tyrannosaurus rex, a two-legged dinosaur that lived about 65 million years ago at the end of the cretaceous period, had a leg length L= 3.1 m and a stride length(the distance from one foot-print to the next print of the same foot S=4.0 m Estimate the walking speed of Tyrannosaurus rex. (page 410 EX13-10) Solution:
Example: Tyrannosaurus rex and physical pendulum All walking animals, including humans, have a natural walking pace, a number of steps per minute that is more comfortable than a faster or slower pace. Suppose this natural pace is equal to the period of the leg, viewed as a uniform rod pivoted at the hip joint. A) How does the natural walking pace depend on the length L of the leg, measured from hip to foot? B) Fossil evidence shows that Tyrannosaurus rex, a two-legged dinosaur that lived about 65 million years ago at the end of the Cretaceous period, had a leg length L = 3.1 m and a stride length (the distance from one foot-print to the next print of the same foot ) S = 4.0 m. Estimate the walking speed of Tyrannosaurus rex. (page 410 EX13-10) Solution:

4 Leg Stride length s length Copyright 9 2004 Poarson Education, inc, publishing as Addison Wosley

Solution: 2 T=2丌 L=2038m/s2 2(3.lm) 2.9s 13g S4.0m_14m T2.9
Solution: s m s m g L T 2.9 3(9.8 / ) 2(3.1 ) 2 3 2 2 2 = = = m s s m T S v 1.4 / 2.9 4.0 = = =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 湖北汽车工业学院:真空中静电场的高斯定理及其应用(PPT讲稿).ppt
- 电子科技大学:干涉(PPT讲稿)Interference.ppt
- 《大学物理》课程PPT教学课件:第七章 电流与磁场.ppt
- 《电子储存环物理》课程PPT教学课件:第六讲 束流寿命.pptx
- 大连民族学院物理与材料学院学院:显微镜的组装 Assemblage of microscope.ppt
- 中国科学技术大学物理系:《半导体器件原理》课程教学资源(PPT课件)第三章 双极型晶体管.ppt
- 浙江大学物理学院:三维光学晶格中的超冷极性分子 Ultracold polar molecules in a 3D optical lattice.pptx
- 四川大学:Establishing Gauge Invariant Linear Response of Fermionic Superuids with Pair Fluctuations(贺言).pptx
- 浙江大学:《半导体物理基础》课程教学资源(PPT讲稿)Fundamentals of Semiconductor Physics(Silicon Technology).ppt
- 浙江大学:粒子物理——极端条件下物质形态 matter under extreme conditions.ppt
- 中国科学院理论物理研究所:标准模型与高能洛伦兹破坏 Standard Model And High-Energy Lorentz Violation.ppt
- 博士研究生入学考试《半导体物理》课程考试大纲.doc
- 中国科学院高能物理研究所:New Results from BES(BESII 物理结果,PPT讲稿).ppt
- 博士研究生入学考试《半导体物理》课程考试大纲.doc
- 北京大学:《量子力学》课程教学资源(讲义)量子物理的基本概念和物理图像(甘子钊).doc
- 中国科学院高能物理研究所:下一代核仪器及设备标准XTCA进展(刘振安).ppt
- 中国科学院理论物理研究所:自引力体系统计物理的新进展.ppt
- 高能物理学会第七届全国 会员代表大会暨学术年会:ATLAS实验和中国组的工作(童国梁).ppt
- 南京邮电大学:离子液体的电活性理论与若干基本物理问题(梁忠诚).ppt
- 南京师范大学物科院:Recent Progress in B Physics(PPT讲稿).ppt
- 北京大学:格点上的赌博(PPT讲稿)格点场论介绍.ppt
- 中国科学技术大学:生物大分子波谱学原理(全相关谱TOCSY、同核核磁实验方法).ppt
- 中国科技大学化学物理系:介观化学体系(PPT讲稿)非平衡非线性反应动力学.ppt
- 原子的基本状况(PPT讲稿)α粒子散射理论.ppt
- GRB的突发伽玛射线暴来自共振逆康普顿散射机制.ppt
- 中国科学院理论物理所:Collider Phenomenology of SUSY Cosmic Connections(杨金民).ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第5章 均匀平面波在无界媒质中的传播.ppt
- 《量子力学》课程PPT教学课件:第五章 近似方法.ppt
- 中科院高能物理研究所:四通道低噪声GEM探测器前端读出ASIC设计(吕继方).ppt
- 西安电子科技大学:《电波传播概论》课程教学资源(PPT课件讲稿)第一部分 电磁波理论基础 Fundamental of Electromagnetic Waves Propagation(主讲:李仁先).pptx
- 清华大学:粒子物理与核物理实验中的数据分析(PPT讲稿)基本概念.pptx
- 西安电子科技大学物理与光电工程学院:电波传播基本概念(PPT课件).pptx
- 《大学物理》课程教学资源(PPT讲稿)第六章 热力学基础(热力学第一定律).ppt
- 中国科学技术大学:光流性能(PPT讲稿)Performance of Optical Flow.ppt
- 赣南师范大学(赣南师范学院):《光电子技术学》课程教学资源(PPT课件)光束的调制和扫描(光束扫描技术).ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第22章 量子力学基础 fundament of quantun mechanics.ppt
- 清华大学:Split Two-Higgs Doublet and Neutrino Condensation.ppt
- 安徽理工大学:《大学物理》课程教学资源(PPT课件)第十八章 量子物理基础 第三讲 量子力学应用初步.ppt
- 四川大学物理学院:Optimizing pointer states for dynamical evolution of quantum correlations under decoherence.ppt
- Non-photonic electron yields in p+p collisions at 200 GeV with reduced detector material in STAR.ppt