中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 02 Intelligent Agents

Intelligent Agents 吉建民 USTC jianminOustc.edu.cn 2022年2月28日 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intelligent Agents 吉建民 USTC jianmin@ustc.edu.cn 2022 年 2 月 28 日

Used Materials Disclaimer:本课件采用了S.Russell and P.Norvig's Artificial Intelligence-A modern approach slides,徐林莉老师课件和其他网 络课程课件,也采用了GitHub中开源代码,以及部分网络博客 内容 口卡4三4色进分QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Used Materials Disclaimer: 本课件采用了 S. Russell and P. Norvig’s Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网 络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客 内容

Table of Contents Agents and Environments PEAS (Performance measure.Environment,Actuators,Sensors) Environment Types Agent Types 4口◆4⊙t4三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table of Contents Agents and Environments PEAS (Performance measure, Environment, Actuators, Sensors) Environment Types Agent Types

Agents ,An agent(智能体)is anything that can be viewed as perceiving its environment through sensors(传感器)and acting upon that environment through actuators(执行器) ,Agent通过传感器感知环境并通过执行器对所处环境产生影 响 Agents include humans,.robots,softbots(软件机器人), thermostats(自动调温器),etc. Human agent: eyes.ears,and other organs for sensors; hands,legs,mouth,and other body parts for actuators Robotic agent: cameras and infrared range finders for sensors; various motors for actuators 口卡4三,4色,进分QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Agents ▶ An agent (智能体) is anything that can be viewed as perceiving its environment through sensors(传感器) and acting upon that environment through actuators(执行器) ▶ Agent 通过传感器感知环境并通过执行器对所处环境产生影 响 ▶ Agents include humans, robots, softbots(软件机器人), thermostats(自动调温器), etc. ▶ Human agent: ▶ eyes, ears, and other organs for sensors; ▶ hands, legs, mouth, and other body parts for actuators ▶ Robotic agent: ▶ cameras and infrared range finders for sensors; ▶ various motors for actuators

Agents and environments sensors percepts environment actions actuator The agent function maps from percept histories to actions: f:P*→A The agent program runs on the physical architecture to produce f agent architecture program 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Agents and environments ▶ The agent function maps from percept histories to actions: f : P ∗ → A ▶ The agent program runs on the physical architecture to produce f ▶ agent = architecture + program

Vacuum-cleaner world B 0g88 888 Percepts:location and contents,e.g.,[A,Dirty] Actions:Left,Right,Suck,NoOp 口卡B·三4色进分双0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vacuum-cleaner world ▶ Percepts: location and contents, e.g., [A,Dirty] ▶ Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent Percept sequence Action [A,Clean] Right [A.Dirty] Suck [B,Clean] Left [B,Dirty] Suck [A,Clean],[A,Clean] Right [A,Clean].[A,Dirty] Suck function Reflex-Vacuum-Agent([location,status])returns an action if status Dirty then return Suck else if location =A then return Right else if location B then return Left What is the right function? Can it be implemented in a small agent program? 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A vacuum-cleaner agent What is the right function? Can it be implemented in a small agent program?

随机覆盖式扫地机器人 iRobot Roomba3-8系列机器人算法 51 45 0 口卡4·三4色,是分QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 随机覆盖式扫地机器人 iRobot Roomba 3-8 系列机器人算法

规划式扫地机器人 规划式清扫路线 随机式清扫路线 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 规划式扫地机器人

Rational agents An agent should strive to"do the right thing",based on what it can perceive and the actions it can perform.The right action is the one that will cause the agent to be most successful ,Performance measure(性能度量):An objective criterion for success of an agent's behavior E.g.,performance measure of a vacuum-cleaner agent could be: amount of dirt cleaned up amount of time taken amount of electricity consumed amount of noise generated,etc. 口卡B·三4色进分双0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rational agents ▶ An agent should strive to “do the right thing”, based on what it can perceive and the actions it can perform. The right action is the one that will cause the agent to be most successful ▶ Performance measure(性能度量): An objective criterion for success of an agent’s behavior ▶ E.g., performance measure of a vacuum-cleaner agent could be: ▶ amount of dirt cleaned up ▶ amount of time taken ▶ amount of electricity consumed ▶ amount of noise generated, etc
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 9-Inference in first-order logic.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 8-First-Order Logic.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 7-Logical Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 6-Adversarial Search.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 5-Constraint Satisfaction Problems.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 4-Informed search algorithms.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 3-Solving problems by searching.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 2-Intelligent Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 18-Learning from Observations.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 14-Bayesian networks.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 13-Uncertainty.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 1-Introduction.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a-6pp.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 03 Solving Problems by Searching.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 04 Informed Search.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 05 Constraint Satisfaction Problems.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 06 Game Playing.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 07 Logical Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 10 Uncertainty and Bayesian Networks.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 11 马尔可夫决策过程.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 08 First-Order Logic and Inference in FOL.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 09 AI Planning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 13 神经网络与深度学习.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 14 Reinforcement Learning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 15 智能机器人系统介绍.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 01 Introdution(主讲:吉建民).pdf
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Course Overview(主讲:闫宏飞).ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Web Search.ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Crawling the Web.ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Retrieval Models.ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Essential Background.ppt
- 哈尔滨工业大学:《信息检索》课程教学资源(课件讲义)文本分类 Text Categorization(主讲:刘挺).pdf
- 哈尔滨工业大学:《信息检索》课程教学资源(课件讲义)信息过滤(主讲:刘挺).pdf