《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25

ROBOTICS CHAPTER 25 Chapter 25 1
Robotics Chapter 25 Chapter 25 1

Outline Robots,Effectors,and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2
Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Motor Control Chapter 25 2

Mobile Robots Chapter 25 3
Mobile Robots Chapter 25 3

Manipulators P Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems,add velocity for each DOF Chapter 25 4
Manipulators R R R P R R Configuration of robot specified by 6 numbers ⇒ 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity for each DOF. Chapter 25 4

Non-holonomic robots (, A car has more DOF(3)than controls(2),so is non-holonomic; cannot generally transition between two infinitesimally close configurations Chapter 25 5
Non-holonomic robots θ (x, y) A car has more DOF (3) than controls (2), so is non-holonomic; cannot generally transition between two infinitesimally close configurations Chapter 25 5

Sensors Range finders:sonar(land,underwater),laser range finder,radar(aircraft), tactile sensors,GPS SICK Imaging sensors:cameras (visual,infrared) Proprioceptive sensors:shaft decoders (joints,wheels),inertial sensors, force sensors,torque sensors Chapter 25 6
Sensors Range finders: sonar (land, underwater), laser range finder, radar (aircraft), tactile sensors, GPS Imaging sensors: cameras (visual, infrared) Proprioceptive sensors: shaft decoders (joints, wheels), inertial sensors, force sensors, torque sensors Chapter 25 6

Localization-Where Am I? Compute current location and orientation (pose)given observations: A-2 Z Chapter 25 7
Localization—Where Am I? Compute current location and orientation (pose) given observations: Xt Xt+1 At−2 At−1 At Zt−1 Xt−1 Zt Zt+1 Chapter 25 7

Localization contd. 0,△ 61+1 h(x) Al +1 Assume Gaussian noise in motion prediction,sensor range measurements Chapter 25 8
Localization contd. xi, yi vt ∆t t ∆t t+1 xt+1 h(xt) xt θt θ ω Z1 Z2 Z3 Z4 Assume Gaussian noise in motion prediction, sensor range measurements Chapter 25 8

Localization contd. Can use particle filtering to produce approximate position estimate Chapter 25 9
Localization contd. Can use particle filtering to produce approximate position estimate Robot position Robot position Robot position Chapter 25 9

Localization contd. Can also use extended Kalman filter for simple cases: :+40民合0 landmark Assumes that landmarks are identifiable-otherwise,posterior is multimodal Chapter 25 10
Localization contd. Can also use extended Kalman filter for simple cases: robot landmark Assumes that landmarks are identifiable—otherwise, posterior is multimodal Chapter 25 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter15a-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter14b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter14b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter14a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter14a-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter13.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 1-Introduction.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 13-Uncertainty.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 14-Bayesian networks.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 18-Learning from Observations.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 2-Intelligent Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 3-Solving problems by searching.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 4-Informed search algorithms.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 5-Constraint Satisfaction Problems.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 6-Adversarial Search.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 7-Logical Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 8-First-Order Logic.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 9-Inference in first-order logic.ppt
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 02 Intelligent Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 03 Solving Problems by Searching.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 04 Informed Search.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 05 Constraint Satisfaction Problems.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 06 Game Playing.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 07 Logical Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 10 Uncertainty and Bayesian Networks.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 11 马尔可夫决策过程.pdf