《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 6-Adversarial Search

Adversarial Search Chapter 6 Section 1-4
Adversarial Search Chapter 6 Section 1 – 4

Outline ·Optimal decisions ·a-βpruning Imperfect,real-time decisions
Outline • Optimal decisions • α-β pruning • Imperfect, real-time decisions

Games vs.search problems ·"Unpredictable"opponent→specifying a move for every possible opponent reply ● ·Time limits→unlikely to find goal,.must approximate
Games vs. search problems • "Unpredictable" opponent → specifying a move for every possible opponent reply • • Time limits → unlikely to find goal, must approximate •

Game tree (2-player, deterministic,turns) MAX (X) MIN (O) MAX (X) X o X X o MIN (O) X o X X o X TERMINAL o x oo X x可 X oo Utility 0
Game tree (2-player, deterministic, turns)

Minimax Perfect play for deterministic games ● Idea:choose move to position with highest minimax value best achievable payoff against best play MAX 3 ·E A MIN 12 21 3
Minimax • Perfect play for deterministic games • • Idea: choose move to position with highest minimax value = best achievable payoff against best play • • E.g., 2-ply game: •

Minimax algorithm function MINIMAX-DECISION(state)returns an action v←MAX-VALUE(state) return the action in SUCCESSORS(state)with value v function MAX-VALUE(state)returns a utility value if TERMINAL-TEST(state)then return UTILITY(state) U←-00 for a,s in SUCCESSORS(state)do MAX(v,MIN-VALUE(s)) return v function MIN-VALUE(state)returns a utility value if TERMINAL-TEST(state)then return UTILITY(state) U←0∞ for a,s in SUCCESSORS(state)do MIN(v,MAX-VALUE(s)) return v
Minimax algorithm

Properties of minimax Complete?Yes (if tree is finite) Optimal?Yes (against an optimal opponent) ● Time complexity?O(bm) Space complexity?O(bm)(depth-first exploration) ● 。For chess,b≈35,m≈100for"reasonable"games exact solution completely infeasible
Properties of minimax • Complete? Yes (if tree is finite) • • Optimal? Yes (against an optimal opponent) • • Time complexity? O(bm) • • Space complexity? O(bm) (depth-first exploration) • • For chess, b ≈ 35, m ≈100 for "reasonable" games → exact solution completely infeasible •

a-B pruning example MAX Λ3 MIN 73 8
α-β pruning example

a-βpruning example MAX ≥3 MIN 3 ≤2 X X
α-β pruning example

a-B pruning example MAX ≥3 MIN 3 ≤2 7≤14 X X 8 2 14
α-β pruning example
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 5-Constraint Satisfaction Problems.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 4-Informed search algorithms.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 3-Solving problems by searching.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 2-Intelligent Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 18-Learning from Observations.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 14-Bayesian networks.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 13-Uncertainty.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 1-Introduction.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter25-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter22-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20b-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter20a-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter18-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(讲义,英文版)chapter16-6pp.pdf
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 7-Logical Agents.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 8-First-Order Logic.ppt
- 《Artificial Intelligence:A Modern Approach》教学资源(PPT课件,英文版)Chapter 9-Inference in first-order logic.ppt
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 02 Intelligent Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 03 Solving Problems by Searching.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 04 Informed Search.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 05 Constraint Satisfaction Problems.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 06 Game Playing.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 07 Logical Agents.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 10 Uncertainty and Bayesian Networks.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 11 马尔可夫决策过程.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 08 First-Order Logic and Inference in FOL.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 09 AI Planning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 13 神经网络与深度学习.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 14 Reinforcement Learning.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 15 智能机器人系统介绍.pdf
- 中国科学技术大学:《人工智能基础》课程教学资源(课件讲稿)Lecture 01 Introdution(主讲:吉建民).pdf
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Course Overview(主讲:闫宏飞).ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Web Search.ppt
- 北京大学:《信息检索》课程教学资源(PPT课件讲稿)Crawling the Web.ppt